首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   322篇
  国内免费   150篇
测绘学   80篇
大气科学   7篇
地球物理   734篇
地质学   481篇
海洋学   43篇
天文学   15篇
综合类   83篇
自然地理   37篇
  2024年   1篇
  2023年   5篇
  2022年   27篇
  2021年   36篇
  2020年   41篇
  2019年   64篇
  2018年   39篇
  2017年   56篇
  2016年   46篇
  2015年   52篇
  2014年   86篇
  2013年   44篇
  2012年   37篇
  2011年   45篇
  2010年   44篇
  2009年   60篇
  2008年   73篇
  2007年   40篇
  2006年   75篇
  2005年   69篇
  2004年   63篇
  2003年   40篇
  2002年   50篇
  2001年   36篇
  2000年   37篇
  1999年   39篇
  1998年   31篇
  1997年   28篇
  1996年   39篇
  1995年   36篇
  1994年   27篇
  1993年   27篇
  1992年   16篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   10篇
  1977年   2篇
  1954年   7篇
排序方式: 共有1480条查询结果,搜索用时 46 毫秒
11.
Daily averaged tilt component data from two sites of the Central Apennines (Italy) and of the Southern Caucasus (Georgia), respectively, revealed intermediate-term tilts as possible precursors to earthquakes (M=3.0÷4.7) which occurred in the above-mentioned seismic areas within a distance of 50 km from the sites. A good temporal correlation as well as a fair spatial correspondence between these residual tilts (with amplitude and duration of some microradians and months, respectively) and main shocks were pointed out, by removing both secular trends and seasonal thermoelastic effects from the raw tilts. An attempt was made to justify the above-mentioned results, based on the assumption that the observed intermediate-term preseismic tilts are the manifestation of aseismic creep episodes of comparable duration in the fault materials of thrust faults close to the tilt sites. The mechanism refers to a strain field slowly propagating from the preparation focal area to the tilt site, through crustal blocks separated by weak transition zones. This propagation is thought to be the cause of the local aseismic fault slip recorded by the tiltmeters. Previously, both discrete structures and strain propagation effects were revealed in the Central Apennines and are thought also to exist in the Southern Caucasus. As in the past, the rheological properties of fault materials are revealed as viscoelastic ones. In fact, creep equations obtained by applying several viscoelastic models on our data, proved to fit quite well some of the observed tilt precursors, producing viscosity and rigidity values very similar to those reported in literature.Professor Petr Viktorovich Manjgaladze died during the writing of this paper  相似文献   
12.
The La Guitarra deposit (Temascaltepec district, South-Central Mexico), belongs to the low/intermediate sulfidation epithermal type, has a polymetallic character although it is currently being mined for Ag and Au. The mineralization shows a polyphasic character and formed through several stages and sub-stages (named I, IIA, IIB, IIC, IID, and III). The previous structural, mineralogical, fluid inclusion and stable isotope studies were used to constrain the selection of samples for volatile and helium isotope analyses portrayed in this study. The N2/Ar overall range obtained from analytical runs on fluid inclusion volatiles, by means of Quadrupole Mass Spectrometry (QMS), is 0 to 2526, and it ranges 0 to 2526 for stage I, 0 to 1264 for stage IIA, 0 to 1369 for stage IIB, 11 to 2401 for stage IIC, 19 to 324 for stage IID, and 0 to 2526 for stage III. These values, combined with the CO2/CH4 ratios, and N2-He-Ar and N2-CH4-Ar relationships, suggest the occurrence of fluids from magmatic, crustal, and shallow meteoric sources in the forming epithermal vein deposit. The helium isotope analyses, obtained by means of Noble Gas Mass Spectrometry, display R/Ra average values between 0.5 and 2, pointing to the occurrence of mantle-derived helium that was relatively diluted or “contaminated” by crustal helium. These volatile analyses, when correlated with the stable isotope data from previous works and He isotope data, show the same distribution of data concerning sources for mineralizing fluids, especially those corresponding to magmatic and crustal sources. Thus, the overall geochemical data from mineralizing fluids are revealed as intrinsically consistent when compared to each other.The three main sources for mineralizing fluids (magmatic, and both deep and shallow meteoric fluids) are accountable at any scale, from stages of mineralization down to specific mineral associations. The volatile and helium isotope data obtained in this paper suggest that the precious metal-bearing mineral associations formed after hydrothermal pulses of predominantly oxidized magmatic fluids, and thus it is likely that precious metals were carried by fluids with such origin. Minerals from base-metal sulfide associations record both crustal and magmatic sources for mineralizing fluids, thus suggesting that base metals could be derived from deep leaching of crustal rocks. At the La Guitarra epithermal deposit there is no evidence for an evolution of mineralizing fluids towards any dominant source. Rather than that, volatile analyses in fluid inclusions suggest that this deposit formed as a pulsing hydrothermal system where each pulse or set of pulses accounts for different compositions of mineralizing fluids.The positive correlation between the relative content of magmatic fluids (high N2/Ar ratios) and H2S suggests that the necessary sulfur to carry mostly gold as bisulfide complexes came essentially from magmatic sources. Chlorine necessary to carry silver and base metals was found to be abundant in inclusion fluids and although there is no evidence about its source, it is plausible that it may come from magmatic sources as well.  相似文献   
13.
The study area in the northwest Sinai represents one of the most significant regions in the Egyptian basement intensely invaded by post-orogenic calc-alkaline dyke swarms. Two post-orogenic dyke swarms have been recognized in NW Sinai namely: (1) mafic dykes of basalt, basaltic andesite and andesite composition and (2) felsic dykes of dacite, rhyodacite and rhyolite composition. These basaltic to rhyolitic dykes intruded contemporaneously and shortly after the intrusion of the post-orogenic leucogranite. The mafic and felsic dykes are enriched in incompatible elements, especially in the large ion lithophile elements (e.g. K, Rb, Ba) and depleted in high field strength elements with negative P, Ti and Nb anomalies. Major and trace element geochemistry indicates that investigated mafic and felsic magma types are not related via fractional crystallization. The protoliths of the mafic and felsic dykes appear to have evolved from different parental magmas. The incompatible trace element patterns favour a derivation of the mafic dykes from melting of a garnet peridotite source followed by fractional crystallization of olivine, clinopyroxene amphibole and zircon. The felsic dykes, on the other hand, could be generated by melting of garnet-free source modified subsequently by fractional crystallization of plagioclase, apatite and titanomagnetite. This implies variable source characteristics at the end of the Pan-African in the NW Sinai.The mafic and felsic dykes can be related to an intracontinental setting and that this was accompanied by a chemical evolution of the subcontinental lithosphere. Magma generation and ascent in the area was favoured by extensional movements, which is already known from other areas in NE Africa.  相似文献   
14.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   
15.
The objective of the TRANSALP project is an investigation of the Eastern Alps with regard to their deep structure and dynamic evolution. The core of the project is a 340-km-long seismic profile at 12°E between Munich and Venice. This paper deals with the P-wave velocity distribution as derived from active source travel time tomography. Our database consists of Vibroseis and explosion seismic travel times recorded at up to 100 seismological stations distributed in a 30-km-wide corridor along the profile. In order to derive a velocity and reflector model, we simultaneously inverted refractions and reflections using a derivative of a damped least squares approach for local earthquake tomography. 8000 travel time picks from dense Vibroseis recordings provide the basis for high resolution in the upper crust. Explosion seismic wide-angle reflection travel times constrain both deeper crustal velocities and structure of the crust–mantle boundary with low resolution. In the resulting model, the Adriatic crust shows significantly higher P-wave velocities than the European crust. The European Moho is dipping south at an angle of 7°. The Adriatic Moho dips north with a gentle inclination at shallower depths. This geometry suggests S-directed subduction. Azimuthal variations of the first-break velocities as well as observations of shear wave splitting reveal strong anisotropy in the Tauern Window. We explain this finding by foliations and laminations generated by lateral extrusion. Based on the P-wave model we also localized almost 100 local earthquakes recorded during the 2-month acquisition campaign in 1999. Seismicity patterns in the North seem related to the Inn valley shear zone, and to thrusting of Austroalpine units over European basement. The alignment of deep seismicity in the Trento-Vicenza region with the top of the Adriatic lower crust corroborates the suggestion of a deep thrust fault in the Southern Alps.  相似文献   
16.
David Verdonck   《Tectonophysics》2006,417(3-4):221-230
Data from 29 tide gauges and 113 pairs of first and second order leveling lines are analyzed to determine the pattern of vertical deformation in the Pacific Northwest of the United States. The data span nearly 100 years and represent the interseismic elastic deformation related to the great earthquake cycle. Uplift rates calculated from leveling surveys are adjusted to a model surface in the tidal reference frame using a robust, weighted, linear, least square technique. Rapid uplift occurs in two distinct broad regions along the coast separated by a narrow zone of slow subsidence. Vertical deformation rates range from > 4 mm/year of uplift on southern Vancouver Island to > 2 mm/year of subsidence in northern coastal Oregon. The deformation pattern is consistent with the results of previous studies and subduction models.  相似文献   
17.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   

18.
用直线和曲线滑面两种模型,模拟预应力锚索加固含有水平软弱层的高陡边坡的潜在滑动面,通过对锚索加固的力学机理分析来阐述预应力在滑动面主滑方向上产生分力的原因。从锚索受力角度上对锚索倾角的取值范围进行探讨,结合实际造孔过程有不同程度的孔斜或弯曲以及获取较好的锚固灌浆效果,就仰角锚固和俯角锚固两种锚固条件分别得出锚索倾角的取值范围,并以此来判定锚索的预应力是否会在滑动面走向方向上产生不利于坡体稳定的下滑力。  相似文献   
19.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
20.
The Gulf of Corinth in central Greece is an active normal fault zone with particularly clear evidence of isostatic footwall uplift, constrained by Quaternary marine terraces, and hanging-wall subsidence and sedimentation. It is bounded to the south by a Pliocene to Early Pleistocene sedimentary basin, which is now eroding into the Gulf. Previous work has suggested that the relief across this region has increased dramatically since the Early Pleistocene, due to the isostatic response to increased rates of footwall erosion and hanging-wall sedimentation. It is indeed assumed here that incision accompanying the draw-down of global sea-level at 0.9 Ma, during the first major Pleistocene glaciation, initiated the erosion of the basin south of the Gulf of Corinth and so abruptly increased the sedimentation rate in the Gulf. The resulting transient thermal and isostatic response to these changes is modelled, with the subsiding depocentre and eroding sediment source coupled by flow in the lower continental crust. The subsequent enhancement of relief, involving an increase in bathymetry from near zero to 900 m and 500 m of uplift of the eroding land surface in the sediment source, is shown to be a direct consequence of this change. The model is sensitive to the effective viscosity of the lower crust, and can thus resolve this parameter by matching observations. A value of 6×1019 Pa s is indicated, suggesting a viscosity at the Moho no greater than 1018 Pa s. Similar transient topographic effects caused by increased rates of sedimentation and erosion are likely to be widespread within the geological record, suggesting that this coupling process involving flow in the weak lower crust may be of major geological and geomorphological importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号