首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   351篇
  国内免费   239篇
测绘学   12篇
大气科学   1篇
地球物理   678篇
地质学   718篇
海洋学   46篇
天文学   7篇
综合类   23篇
自然地理   146篇
  2023年   6篇
  2022年   19篇
  2021年   25篇
  2020年   32篇
  2019年   49篇
  2018年   40篇
  2017年   49篇
  2016年   45篇
  2015年   50篇
  2014年   75篇
  2013年   52篇
  2012年   38篇
  2011年   51篇
  2010年   40篇
  2009年   66篇
  2008年   89篇
  2007年   65篇
  2006年   92篇
  2005年   85篇
  2004年   79篇
  2003年   51篇
  2002年   54篇
  2001年   53篇
  2000年   42篇
  1999年   49篇
  1998年   48篇
  1997年   29篇
  1996年   55篇
  1995年   47篇
  1994年   30篇
  1993年   31篇
  1992年   17篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   10篇
  1977年   2篇
  1954年   8篇
排序方式: 共有1631条查询结果,搜索用时 15 毫秒
51.
本文简述了GPS测量技术 ,重点介绍了福建地壳形变GPS观测网利用GPS定位技术在地壳形变监测方面及其在地球动力学方面的应用 ,并取得了有重要意义的科学成果。  相似文献   
52.
第32届国际地质大会通过按地域和构造作用过程等形式划分11个专题会场,展示了地球动力学的研究成果。其成果主要包括特提斯域构造演化及其不同阶段的块体裂解、拼合及后期改造的细节过程,地质历史中的超大陆分布和成因,俯冲—碰撞带深部构造和变质机制,安第斯山(Andes)缓倾角平坦式俯冲过程及其地壳变形和岩浆作用的响应,显微构造对动力作用过程的影响和控制,地壳和上地幔熔融、流变学和动力学意义,大洋岩石圈构造与演化,大陆地盾区构造和再活动,稳定大陆区地震,空间大地测量学和现代板块运动等方面。这些研究成果充分显示了地球动力学研究具有多学科、多手段(如古地磁、超深钻、地球物理、大地测量和GPS等)、多尺度(宏观、微观)和多时期、全面、综合、并逐步接近定时、定位和定量地探索和研究的特点,它从地球(主要为上地幔和地壳)的组成、结构构造入手,逐步认识地球(主要为地球岩石圈)的演化和动力学。  相似文献   
53.
In this work we have tried to detect and collect later phases associated with the Moho discontinuity and use them to study the lateral variations of the crustal thickness in southwest (SW) Japan. We first compute synthetic seismograms for local earthquakes taking into account the focal mechanism solutions estimated from first motion polarity data. Then we compare the synthetics with the observed waveforms to detect the major later phases in seismograms of shallow crustal earthquakes in SW Japan. Taking the advantage of the high quality and great quantity of Hi-net waveform data now available throughout the entire Japan Islands, we have detected 1659 Moho-reflected phases (PmP and SmS) from shallow events in SW Japan. We estimated the crustal thickness in the study area using travel time differences between these later phases and the first P and S arrivals. Our results show that the Moho is deep in Chubu district and becomes shallower along the coastlines of the Japan Sea and the Pacific Ocean. A thinner crust appears in Osaka Bay and Awajii Island where the 1995 Kobe earthquake (M7.2) occurred.  相似文献   
54.
We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.  相似文献   
55.
Introduction Based on the elastic theory of the hard inclusion (Dobrovolskii, 1991), we developed an inclusion theory of rheologic medium, and applied the results of bulk-strain field of a rheologic inclusion model to explain the spatial-temporal evolution process of earthquake precursors (SONG, et al, 2000). In the former paper (SONG, et al, 2003), we derived the viscoelastic displacement field of the rheologic inclusion model on the basis of the analytic expression of displacement field o…  相似文献   
56.
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian.  相似文献   
57.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   
58.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   
59.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
60.
Deep seismic reflection data across the Archaean Eastern Goldfields Province, northeastern Yilgarn Craton, Western Australia, have provided information on its crustal architecture and on several of its highly mineralised belts. The seismic reflection data allow interpretation of several prominent crustal scale features, including an eastward thickening of the crust, subdivision of the crust into three broad layers, the presence of a prominent east dip to the majority of the reflections and the interpretation of three east-dipping crustal-penetrating shear zones. These east-dipping shear zones are major structures that subdivide the region into four terranes. Major orogenic gold deposits in the Eastern Goldfields Province are spatially associated with these major structures. The Laverton Tectonic Zone, for example, is a highly mineralised corridor that contains several world-class gold deposits plus many smaller deposits. Other non crustal-penetrating structures within the area do not appear to be as well endowed metallogenically as the Laverton structure. The seismic reflection data have also imaged a series of low-angle shear zones within and beneath the granite–greenstone terranes. Where the low-angle shear zones intersect the major crustal-penetrating structures, a wedge shaped geometry is formed. This geometry forms a suitable fluid focusing wedge in which upward to subhorizontal moving fluids are focused and then distributed into the nearby complexly deformed greenstones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号