首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   14篇
  国内免费   13篇
测绘学   4篇
大气科学   10篇
地球物理   30篇
地质学   95篇
海洋学   9篇
天文学   29篇
综合类   4篇
自然地理   21篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   28篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   16篇
  2008年   12篇
  2007年   14篇
  2006年   8篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
  1877年   1篇
排序方式: 共有202条查询结果,搜索用时 281 毫秒
1.
We consider the particular solutions of the evolutionary system of equations in elements that correspond to planar and spatial circular orbits of the singly averaged Hill problem. We analyze the stability of planar and spatial circular orbits to inclination and eccentricity, respectively. We construct the instability regions of both particular solutions in the plane of parameters of the problem.  相似文献   
2.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   
3.
Gravitational collapse in response to the creation of salt swells and diapirs is a common phenomenon within regions such as the Southern North Sea. Although collapse faulting and slumping of linear salt swell flanks has previously been documented, the existence of concentric collapse structures surrounding diapirs and isolated salt lows is a recently recognised feature. 3-D seismic data from the Southern North Sea demonstrates that concentric collapse faulting around both diapirs and subcircular salt lows is common. The recognition of concentric collapse structures formed in response to salt withdrawal, and adjacent inflation, provides an alternative mechanism for the origin of the proposed Silverpit impact crater.  相似文献   
4.
The Hill End Trough of central‐western New South Wales was an elongate deep marine basin that existed in the Lachlan Fold Belt from the early Late Silurian to late Early Devonian. It is represented by a regionally extensive, unfossiliferous sequence of interbedded turbidites and hemipelagites of substantially silicic volcanic derivation, which passes laterally into contemporaneous shallow‐water sedimentary rocks. The Turondale and Merrions Formations of the Lower Devonian Crudine Group are two prominent volcanogenic formations in the predominantly sedimentary trough sequence. They contain a range of primary and resedimented volcanic facies suitable for U–Pb dating. These include widespread subaqueous silicic lavas and/or lava cryptodomes, and thick sequences of crystal‐rich volcaniclastic sandstone emplaced by a succession of mass‐flows that were generated by interaction between contemporaneous subaerial pyroclastic flows and the sea. Ion microprobe dating of the two volcanogenic formations by means of the commonly used SL 13 zircon standard yields ages ranging between 411.3 ± 5.1 and 404.8 ± 4.8 Ma. Normalising the data against a different zircon standard (QGNG) yields preferred slightly older mean ages that range between 413.4 ± 6.6 and 407.1 ± 6.9 Ma. These ages broadly approximate the Early Devonian age that has been historically associated with the Crudine Group. However, the biostratigraphically inferred late Lochkovian ‐ early Emsian (mid‐Early Devonian) age for the Merrions Formation is inconsistent with the current Australian Phanerozoic Timescale, which assigns an age of 410 Ma to the Silurian‐Devonian boundary, and ages of 404.5 Ma and 395.5 Ma to the base and top of the Pragian, respectively. There is, however, good agreement if the new ages are compared with the most recently published revision of the Devonian time‐scale. This suggests that the Early Devonian stage boundaries of the Australian Phanerozoic Timescale need to be revised downward. The new ages for the Merrions Formation could also provide a time point on this time‐scale for the Pragian to early Emsian, for which no data are presently available.  相似文献   
5.
The monitoring of sulfur species in crater lakes has proven to be useful for forecasting episodes of volcanic unrest in certain active volcanoes, including Poás, Costa Rica; Kusatsu-Shirane, Japan; and Mt. Ruapehu, New Zealand. In this study, we have improved the current geochemical monitoring of El Chichón volcano through the setting of optimal high-performance liquid chromatography conditions (HPLC) for the analysis of S2−, SO32−, S2O32−, S4O62− and SO42− using a common chromatographic system. The procedure was applied to the analysis of lake samples taken in March, July and October of 2014 and April of 2015. The results were promising, since nearly all species were detected (with the exception of S2O32−) in measurable amounts, including S2− (<0.85–5.05 mg/L), SO32− (<2.77–26.1 mg/L), S4O62− (108.27–303.82 mg/L) and SO42− (489.58–676.26 mg/L). The spatial distribution of these species along the lakeshore showed zones of increased concentrations to the east and southeast of the lake, which provides information on the distribution of faults or cracks that feed hydrothermal fluids to the lake. This method thus provides additional information linked to the volcanic and hydrothermal activity of the volcano.  相似文献   
6.
撞击坑是月表最典型的地质单元,其溅射物作为撞击坑的坑外组成部分可分布到距离坑中心10个直径距离之外的区域,因此撞击溅射物也是月球地质编图中最重要的表达要素之一。本文使用月球勘测轨道器(LRO)的激光高度计(LOLA)数据、广角相机(WAC)影像、窄角相机(NAC)影像以及Clementine的UVVIS多光谱数据,研究了哥白尼纪正面月海区直径31km的Kepler撞击坑和背面月陆区直径30km的Necho撞击坑。哥白尼纪撞击坑溅射沉积物可以分为三个相:连续溅射沉积相(CE)、不连续溅射沉积相(DE)和辐射纹(CR)。连续溅射沉积相分布在最大约2.6个半径范围之内,不连续溅射沉积相分布在最大近11个半径范围之内,辐射纹分布在最大近29个半径范围之内。本文强调了多源数据结合在识别撞击坑溅射沉积物中的作用,对Kepler坑和Necho坑溅射沉积物进行了填图,不对称分布的特征表明这两个坑可能形成于倾斜撞击。  相似文献   
7.
南京湖山地区大石碑断层位于大石碑向斜北西翼,在北东方向人工开采的剖面上表现为正断层性质。通过对大石碑 断层及其附近断层和节理的构造要素测量分析、构造应力场求解等研究,文章认为该断层以右行平移断层为主,兼有正断 层的性质。印支期该区在北西-南东方向挤压构造应力场作用下,形成北东方向的褶皱(宁镇山脉)、北西方向的右行平移 断层和北北西方向左行平移断层,其中北西方向的右行平移断层在北东方向的剖面上表现出正断层的假象,是断层效应的 一个典型教学实例。  相似文献   
8.
A tectonic study of the Newberry Crater region of central Oregon has been based on the interpretation of Landsat Thematic Mapper imagery. Two major faults, the Brothers-Tumalo and Eugene-Denio Faults, pass NW-SE through the region and step to the right at the eastern margin of the Cascades Range. Dextral wrench faulting on these structures during the Tertiary controlled the formation of the La Pine Basin, a pull-apart structure containing Tertiary and Quaternary sediments and volcanics. Tertiary wrench faulting appears to have been associated with rotations of crustal blocks at a plate margin, but was superseded in the Quaternary by extensional faulting of the Basin and Range province. Newberry Crater and other major bimodal volcanic centres in the NW Cordillera (Crater Lake, Medicine Lake, Mt. St. Helens) seem to have a similar tectonic setting in crustal pull-aparts. A relationship between magma type and fault trend at Newberry and Medicine Lake is suggested.  相似文献   
9.
This paper presents the Hill instability analysis of Tension keg Platform (TLP) tether in deep sea. The 2-D nonlinear beanl model, which is undergoing coupled axial and transverse vibrations, is applied. The governing equations are reduced to nonlinear Hill equation by use of the Galerkin' s method and the modes superposition principle. The Hill instability charted up to large parameters is obtained. An important parameter M is defined and can be expressed as the functions of tether length, the platform surge and heave motion amplitudes. Some example studies are performed for various envirotnnental conditions. The results demonstrate that the nonlinear coupling between the axial and transverse vibrations has a significant effect on the response of structure. It needs to be considered for the accurate dynamic analysis of long TI2 tether subjected to the combined platfolna surge and heave motions.  相似文献   
10.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号