首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7232篇
  免费   1259篇
  国内免费   1211篇
测绘学   160篇
大气科学   658篇
地球物理   2657篇
地质学   3836篇
海洋学   909篇
天文学   51篇
综合类   302篇
自然地理   1129篇
  2024年   38篇
  2023年   115篇
  2022年   200篇
  2021年   279篇
  2020年   292篇
  2019年   293篇
  2018年   264篇
  2017年   300篇
  2016年   284篇
  2015年   300篇
  2014年   436篇
  2013年   571篇
  2012年   353篇
  2011年   419篇
  2010年   379篇
  2009年   456篇
  2008年   520篇
  2007年   451篇
  2006年   472篇
  2005年   351篇
  2004年   329篇
  2003年   308篇
  2002年   279篇
  2001年   254篇
  2000年   233篇
  1999年   233篇
  1998年   200篇
  1997年   175篇
  1996年   146篇
  1995年   125篇
  1994年   107篇
  1993年   111篇
  1992年   91篇
  1991年   71篇
  1990年   72篇
  1989年   45篇
  1988年   43篇
  1987年   18篇
  1986年   14篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1978年   18篇
  1977年   5篇
  1976年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有9702条查询结果,搜索用时 15 毫秒
181.
Presented in this paper is a mathematical model to calculate the probability of the sediment incipient motion,in which the effects of the fluctuating pressure and the seepage are considered.The instantaneous bed shear velocity and the pressure gradient on the bed downstream of the backward-facing step flow are obtained according to the PIV measurements.It is found that the instantaneous pressure gradient on the bed obeys normal distribution.The probability of the sediment incipient motion on the bed downstream of the backward-facing step flow is given by the mathematical model.The predicted results agree well with the experiment in the region downstream of the reattachment point while a large discrepancy between the theory and experiment is seen in the region near the reattachment point.The possible reasons for this discrepancy are discussed.  相似文献   
182.
The scale effect of form factor is investigated via a numerical approach in this paper, where the turbulent ship flow is computed by solving the steady and incompressible Reynolds-averaged Navier-Stokes and continuity equations. A wall function approach is employed to bridge the near-wall and outer turbulent flow region. The numerical scheme based on a finite-volume formulation is applied to discretize the coupled governing equation. For the sake of numerical stability, accuracy and economy, an identical grid is employed to compute ship flow at different Reynolds number, where the grid is optimized for the medium Reynolds number of the investigated range. Four surface ships and two sub-bodies with notably different geometrical characteristics are chosen as the investigated cases, where double-model flow without appendages is computed. The calculated total resistance coefficient shows a decreasing tendency against Reynolds number among all studied hulls. Similar to the calculated total resistance coefficient, the calculated friction resistance coefficient decreases with the Reynolds number and varies relatively little for a given Reynolds number among different hulls. The viscous pressure resistance coefficient is less insensitive to the Reynolds number but apparently depends on hull form. Compared with the form factor calculation based on empirical friction lines, the flat-plate friction prediction based on CFD approach clearly gives smaller Re-dependent form factor, which should more realistically reflect the scale effect of form factor. The form factor exhibits a near linear and increasing dependence on Reynolds number. The numerical results show that the dependence of rP on Reynolds number mainly governs the scale effect of form factor.  相似文献   
183.
The highly accurate Boussinesq-type equations of Madsen et al. (Madsen, P.A., Bingham, H.B., Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. R. Soc. Lond. A 459, 1075–1104; Madsen, P.A., Fuhrman, D.R., Wang, B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945) are re-derived in a more general framework which establishes the correct relationship between the model in a velocity formulation and a velocity potential formulation. Although most work with this model has used the velocity formulation, the potential formulation is of interest because it reduces the computational effort by approximately a factor of two and facilitates a coupling to other potential flow solvers. A new shoaling enhancement operator is introduced to derive new models (in both formulations) with a velocity profile which is always consistent with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position zˆ. For practical implementation however, the solution is expanded based on a slow variation of zˆ and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators satisfy a potential flow and/or conserve mass up to the order of truncation of the model. The performance of the new formulation is validated using computations of linear and nonlinear shoaling problems. The behaviour on a rapidly varying bathymetry is also checked using linear wave reflection from a shelf and Bragg scattering from an undulating bottom. Although the new models perform equally well for Bragg scattering they fail earlier than the existing model for reflection/transmission problems in very deep water.  相似文献   
184.
We present a two-dimensional, two-phase model for non-cohesive sediment transport. This model solves concentration-weighted averaged equations of motion for both fluid and sediment phases. The model accounts for the interphase momentum transfer by considering drag forces. A collisional theory is used to compute the sediment stresses, while a two-equation (kε) fluid turbulence closure is implemented. A benchmark sediment transport problem concerning the scouring downstream of an apron is carried out as an example and numerical results agree with existing experimental data.  相似文献   
185.
分析了气动式波浪发电透平的特点、运行环境以及透平与振荡气流之间的相互作用过程,提出了描述透平稳态特性和动态特性的参数以及描述透平运动性能的特性曲线,推导得出透平的稳态最佳工作点,最后提出了透平的匹配设计方法。该设计模型的建立,对波浪透平的研究和设计具有较重要的指导意义  相似文献   
186.
To further understand the gas-curtain generation characteristics during the launching process of the underwater guns, a simulated gas-injector with multiple nozzles is designed and the expansion process of these multiple combustion-gas jets is experimentally captured. Experiment results indicate that, with turbulent mixing between the gas jets and the liquid medium, the gas curtain is generated in the observation chamber. Based on the experiment, a three dimensional unsteady model is established to simulate the expansion process of the multiple jets. Numerical result shows, with the injection of the gas jets, pressure declines in the Taylor cavity along the axial direction at the beginning. During the expansion process, the multiple jets contact and interact with each other, and pressure rises in the mixing area. After merging, backflow vortexes interact and converge, and the vortexes move along the axial direction with the expansion of the combustion gas jets.  相似文献   
187.
Risers/pipes conveying fluid are a typical kind of slender structures commonly used in marine engineering. It is of great academic significance and application value for us to evaluate and understand the vibration characteristics and nonlinear responses of these risers under the combined action of internal and external fluid flows. In this paper, the nonplanar vibrations and multi-modal responses of pinned-pinned risers in shear cross flow are numerically studied. With this objective in mind, the van der Pol wake oscillators are used to simulate the dynamical behavior of the vortex shedding in the wake. Two nonlinear equations of motion of the riser are proposed to govern the lateral responses of the riser structure. The nonplanar nonlinear equations for the riser and wake are then discretized by employing Galerkin's method and solved by using a fourth-order Runge–Kutta integration algorithm. Theoretical results show that the coupled frequencies for cross-flow (CF) and in-line (IL) motions and the corresponding coupled damping ratio could be influenced by the external and/or internal fluid velocities. Based on extensive calculations, the dynamical behavior of the riser with various internal and external flow velocities are presented in the form of bifurcation diagrams, time traces, phase portraits, oscillation trajectories and response spectrum curves. It is shown that some interesting dynamical phenomena, such as ‘lock-in’ state, ‘figure-of-eight’ trajectory and quasi-periodic oscillation, could occur in such a fluid-structure interaction system. Our results also demonstrate that the shear parameter can significantly affect the dynamic responses of the riser. When the shear parameter of the cross flow is large, multi-modal quasi-periodic responses of the riser can be excited, showing some new features undetected in the system of fluid-conveying risers in uniform cross flow.  相似文献   
188.
The vertical water entry of asymmetric two-dimensional bodies with flow separation is considered. As long as there is no flow separation, linearised Wagner's theory combined with the modified Logvinovich model has been shown to provide computationally fast and reliable estimates of slamming loads during water entry. Tassin et al. [11] introduced the fictitious body continuation (FBC) concept as a way to extend the use of Wagner's model to separated flow configurations, but they only considered symmetric bodies. In the present study, we investigate the ability of the FBC concept to provide accurate estimates of slamming loads for asymmetric bodies. In this case, flow separation may not occur simultaneously on both sides of the body. During an intermediate phase, slamming loads are governed by a competition between the local drop in pressure due to partial flow separation and the ongoing expansion of the wetted area. As a first benchmark for the model, we consider the water entry of an inclined flat plate and compare the FBC estimates with the results of a nonlinear model. Then, we consider the case of a foil and compare the FBC results with computational fluid dynamics predictions. In both cases, we find that the FBC model is able to provide reliable estimates of the slamming loads.  相似文献   
189.
离岸型背景风和海陆风对珠江三角洲地区灰霾天气的影响   总被引:18,自引:0,他引:18  
不同类型的背景场和海陆风对珠江三角洲地区大气灰霾有不同的影响。作者主要利用空气质量模式系统Models-3 (MM5/SMOKE/CMAQ)研究离岸型背景风和海陆风对珠江三角洲一次灰霾天气的影响, 结果表明, 中尺度气象模式MM5对珠江三角洲地区这次灰霾天气的气象模拟, 较好地模拟了风速和风向的变化。多尺度空气质量模式CMAQ模拟出了PM10浓度的变化, 与观测值比较一致。在这次灰霾天气过程中, 由于离岸型背景风与陆风风向一致, 在陆风维持的情况下, 内陆源区的PM10被输送到沿海地区, 导致沿海城市和海面上PM10浓度比较高; 而在海风维持的情况下, 海风与离岸型背景风方向相反, 造成海风较小, 致使整个珠江三角洲地区灰霾天气都比较严重。敏感性试验结果表明离岸背景风和海陆风的相互作用对灰霾天气的生成与分布有重大的影响。  相似文献   
190.
重力流分支水道是下刚果盆地中新统发育的典型深水沉积单元之一。利用相干时间切片、RMS均方根振幅和3D振幅可视化等地球物理手段识别出工区内发育的深水弯曲水道,论述了复合水道砂体内部充填结构,精细刻画了深水水道砂体的内幕结构,并利用地质异常体处理与三维可视化技术相结合追踪出工区内发育的水道砂体,描述了其平面分布特征和储层特征。工区内主要发育高弯度重力流分支水道,根据深水水道充填成因分类将其进一步划分为侵蚀充填型和侵蚀—加积型水道复合体;大型侵蚀水道内部由多期充填,主要由滑塌形成的旋转滑块和碎屑流、叠置水道及水道—天然堤沉积组成;并在三维可视化中识别出了多期水道砂体,探讨了水道砂体的地震反射特征和测井响应特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号