首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   12篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   41篇
地质学   37篇
海洋学   3篇
天文学   1篇
自然地理   37篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1979年   1篇
排序方式: 共有121条查询结果,搜索用时 234 毫秒
31.
Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering‐limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south‐ and west‐facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north‐ and east‐facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest‐ and northeast‐facing hillslopes rather than between south‐ and north‐facing hillslopes in the study sites. Modeling results suggest that southwest‐facing hillslopes are more cliff‐dominated than southeast‐facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest‐facing hillslopes receive peak solar insolation during warmer times of day compared with southeast‐facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast‐ and southwest‐facing hillslopes in the Northern Hemisphere and between southeast‐ and northwest‐facing hillslopes in the Southern Hemisphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
32.
Prior numerical modeling work has suggested that incision into sub-horizontal layered stratigraphy with variable erodibility induces non-uniform erosion rates even if base-level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base-level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff-forming units, erosion rates estimated from concentrations of cosmogenic beryllium-10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream-power incision model as a quantitative guide to the potential magnitude of this amplification of 10Be-derived erosion rates above the rate of base-level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening-slope gradient on threshold hillslopes. We test our predictions in the cliff-and-bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base-level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6-fold range in rock strength from near-surface P-wave velocity measurements. The approximately four-fold difference between the median 10Be-derived erosion rate and the long-term rate of base-level fall is consistent with our model and the observation that the stronger, cliff-forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd.  相似文献   
33.
The Albian to Santonian Colorado Group in the heavy oil area of Cold Lake, east-central Alberta represents a relatively condensed section of shale-dominated sedimentation within the Western Interior Sea. These shales form the cap rock to the underlying Clearwater and Grand Rapids formations that are exploited for bitumen extraction. Two cores covering the entire Colorado Group provide a unique opportunity for establishment of a stratigraphic reference in an area that has received attention only for its heavy oil-bearing Mannville Group. Based on sedimentology, geochemistry, micropaleontology, nannofossils, and wireline log data, the Colorado Group was subdivided into the Joli Fou, Viking, Westgate, Fish Scales, Belle Fourche, Second White Specks, and Niobrara formations. The Niobrara Formation was subdivided further into the Verger Member, informal Cold Lake member, and First White Specks Member. Because of this region’s small accommodation space and distance to sources of coarse clastic sediment, disconformities are indicated lithologically by bioclastic layers and missing biozones. Foraminiferal subzones revealed two erosional boundaries associated with the Viking Formation. Faunal and floral evidence coupled with wireline log correlations suggest that the Middle to Upper Turonian Carlile Formation, as described from southeastern Alberta, is missing. That extends the Middle Turonian to Coniacian unconformity, as recognized in central Saskatchewan, westwards into Alberta.  相似文献   
34.
Water and poverty in the United States   总被引:1,自引:0,他引:1  
Contrary to reports of 100% access to safe water and sanitation in international surveys, the United States (US) has a complex landscape of low-income water problems. This paper begins with a critical international perspective on water and poverty in the US. It shows that the US had a declining role in international water programs during the late-20th century, which contributed to limited international awareness of low-income water programs in the US, and limited US awareness of low-income water issues. To address the first problem, we provide an overview of low-income water programs in the US with an emphasis on those that serve small communities. We then examine census data on inadequate water systems in Colorado, which indicate that severe plumbing deficiencies persist despite these public water programs. Inadequate plumbing rates are lower than income poverty rates, however, which indicate partially successful strategies for achieving low-income water services. Analysis of local data in urban, rural, and mountainous areas of the state shows that poverty and water problems are correlated in complex ways, which has implications for all nations striving for universal access to safe water and sanitation.  相似文献   
35.
Desert Potholes: Ephemeral Aquatic Microsystems   总被引:1,自引:0,他引:1  
An enigma of the Colorado Plateau high desert is the “pothole”, which ranges from shallow ephemeral puddles to deeply carved pools. The existence of prokaryotic to eukaryotic organisms within these pools is largely controlled by the presence of collected rainwater. Multivariate statistical analysis of physical and chemical limnologic data variables measured from potholes indicates spatial and temporal variations, particularly in water depth, manganese, iron, nitrate and sulfate concentrations and salinity. Variation in water depth and salinity are likely related to the amount of time since the last precipitation, whereas the other variables may be related to redox potential. The spatial and temporal variations in water chemistry affect the distribution of organisms, which must adapt to daily and seasonal extremes of fluctuating temperature (0–60 °C), pH changes of as much as 5 units over 12 days, and desiccation. For example, many species become dormant when potholes dry, in order to endure intense heat, UV radiation, desiccation and freezing, only to flourish again upon rehydration. But the pothole organisms also have a profound impact on the potholes. Through photosynthesis and respiration, pothole organisms affect redox potential, and indirectly alter the water chemistry. Laboratory examination of dried biofilm from the potholes revealed that within 2 weeks of hydration, the surface of the desiccated, black biofilm became green from cyanobacterial growth, which supported significant growth in heterotrophic bacterial populations. This complex biofilm is persumably responsible for dissolving the cement between the sandstone grains, allowing the potholes to enlarge, and for sealing the potholes, enabling them to retain water longer than the surrounding sandstone. Despite the remarkable ability of life in potholes to persist, desert potholes may be extremely sensitive to anthropogenic effects. The unique limnology and ecology of Utah potholes holds great scientific value for understanding water–rock–biological interactions with possible applications to life on other planetary bodies.  相似文献   
36.
Newly discovered olivine phlogopite lamproite dikes intrude Jurassic siliciclastic strata in the Green River Desert subregion of the western Colorado Plateau tectonic province in southeastern Utah. The dikes yield an age of 22 Ma both from 40Ar/39Ar step-heating of phlogopite and from isochron modeling of laser-fused sanidine. This age is similar to those of mica-rich minettes and melanephelinites of the Wasatch Plateau about 125 km northwest and within the age range of the Navajo potassic volcanic field about 150 km to the southeast. The dikes intruded a pre-existing, northwest-oriented fracture system containing previously introduced bitumen, indicating that some regional lineaments of this trend are Early Miocene or older. The dikes are highly LREE-enriched, and display lamproite-specific REE ratios and phlogopite and sanidine compositions. Incompatible element and radiogenic isotope (Nd–Sr–Pb) ratios suggest that lithospheric source material modified by ancient subduction processes, together with younger asthenospheric source components, produced the melt. Timing of the intrusion coincides with the transition from Early–Middle Cenozoic, calc-alkaline plutonism to the dominantly mafic, Basin and Range type volcanism of the Late Cenozoic. While the lamproite occurrence indicates thermal input from the mantle, model non-uniqueness for both magma source depths and geophysical structure prevents quantitative comparison of Early Miocene with present-day lithospheric thickness.  相似文献   
37.
Additional aspects regarding the optimum fixed and roving sampling techniques, to those already explored in a previous authors’ throughfall study, are further investigated here. The roving technique consists in the random repositioning, with a frequency fr, of N throughfall gauges among M positions (M > N), oppositely to the fixed or stationary arrangement where N = M. Both fixed and roving optimum sampling techniques of 100 monitored throughfall events sampled with 200 fixed gauges under a semideciduous tropical rain forest in Panama were investigated by means of Monte‐Carlo numerical experiments. Mean dispersion was shown to be always smaller in the roving versus the fixed gauge arrangement, independently of the relocation frequency studied (fr = 0.1, 0.2, 0.5, 1), such that all roving schemes with N ≥ 50 gauges lay within ±5% of the mean cumulative throughfall. Results indicated that a low variability, high precision, and accuracy are obtained with a modest relocation frequency fr = 0.2 (i.e. a relocation every five episodes of the original 100 measured events) and N = 30 roving gauges, with no significant improvement worth the extra field work beyond fr > 0.2 and N >30. Only by increasing the number of roving positions from M < < 200 to M = 200, the precision and accuracy of the mean estimate were improved without comprising additional labour. Hence, a roving sampling scheme which relocates gauges over completely new fresh sites each roving cycle is recommended for future throughfall studies. Finally, we designed an a priori sampling strategy which permitted us to conclude that using only the first 20 out of the total 100 measuring events, for the remaining 80 throughfall field measurements, N = 40 roving gauges (i.e. five time less than the originally 200 gauges displayed) would have been sufficient for ensuring ≤5% error, expressed as percentage of the mean cumulative throughfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
This special issue (SI) ‘A Tribute to Edward P. Glenn (1947-2017): A legacy of Scientific Environmental Assessment and Applications in Hydrological Processes’ is a celebration of the extensive work of Dr. Ed Glenn that was instrumental across multiple sub-disciplines of hydrology. The SI highlights four primary areas of hydrological processes that are cornerstones of Ed Glenn's over four decades of research. These contributions cover the following specialties: (i) Hydrology in the Colorado River Delta; (ii) Riparian ecosystem water use; (iii) Riparian Plant ecophysiology and ecohydrology; and (iv) Methods and models to characterize evapotranspiration. Since Ed was passionate about the dryland delta at the end of the Colorado River, we begin with four research studies that focus on this special region on the U.S.–Mexico border which encompasses four states (Baja and Sonora in Mexico and California and Arizona in United States) as well as tribal communities in the transboundary area. The Colorado River delta reaches the Northern Gulf of California in the Sea of Cortez which has been designated as a UNESCO international biosphere reserve (‘Reserva de la Biosfera El Pinacate y Gran Desierto de Altar’), which includes the Upper Gulf of California and Delta of the Colorado River (‘Reserva de la Biosfera Alto Golfo de California y Delta del Río Colorado’). Ed spent the majority of his last three decades on water balance studies and on ground-based transpiration quantification for validation of satellite and airborne remote sensing methods. We wrap up the special issue with contributions related to improving satellite and airborne remote sensing estimation of actual evapotranspiration. It is our pleasure to summarize the 16 research studies contributed to the special issue to honour Ed Glenn's research interests.  相似文献   
39.
Water agreements between Mexico and the United States have been crucial to preserving and restoring the Colorado River Delta's wetlands. Nowadays, increased water demand and climate change in the Colorado River Basin could threaten the conservation of the Ciénega de Santa Clara, a 4709 ha coastal wetland at the Sonoran Desert's edge. The international Ramsar convention recognizes the Ciénega de Santa Clara ecosystem for providing vital ecological services, including habitat for endemic, endangered, and migratory species. The hydrology of this wetland has not been completely understood since the 2010–2011 trial run of the Yuma Desalting Plant. Therefore, this study was conducted to identify and quantify the hydrological elements essential for the conservation of this wetland, under three scenarios: (a) normal inflow conditions of the water source – the Wellton-Mohawk canal; (b) inflow reductions, and; (c) an increase of temperature due to global warming. Water and mass balances estimates were conducted every month during 2014–2015; in situ measurements of inflows were carried out on Southern International Boundary in Wellton-Mohawk canal, the Riíto Drain, groundwater, and precipitation: evapotranspiration outputs were estimated using local weather stations and Penman-Monteith formulations. Temperature increases were based on the Intergovernmental Panel on Climate Change projections for the next 100 years. Results showed disconnection in the surface flow of water from the wetland to the adjacent Gulf of California. This behaviour was observed mainly in the summer months in the three scenarios. The disconnections reduced the wetland area and water storage. The hydrological functionality of the Ciénega de Santa Clara wetland depends on the water supply from the Wellton-Mohawk canal, with a minimum continuous discharge of 5.10 m3 s−1 during the summer months.  相似文献   
40.
The number of people living in wildfire-prone wildland–urban interface (WUI) communities is on the rise. However, no prior study has investigated wildfire-induced residential relocation from WUI areas after a major fire event. To provide insight into the association between sociodemographic and sociopsychological characteristics and wildfire-related intention to move, we use data from a survey of WUI residents in Boulder and Larimer counties, Colorado. The data were collected 2 months after the devastating Fourmile Canyon fire destroyed 169 homes and burned more than 6,000 acres of public and private land. Although this study is working with a small migrant sample, logistic regression models demonstrate that survey respondents intending to move in relation to wildfire incidence do not differ sociodemographically from their nonmigrant counterparts. They do, however, show significantly higher levels of risk perception. Investigating destination choices shows a preference for short-distance moves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号