首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11217篇
  免费   2707篇
  国内免费   469篇
测绘学   195篇
大气科学   19篇
地球物理   11100篇
地质学   1617篇
海洋学   106篇
天文学   13篇
综合类   925篇
自然地理   418篇
  2024年   38篇
  2023年   134篇
  2022年   263篇
  2021年   429篇
  2020年   369篇
  2019年   401篇
  2018年   407篇
  2017年   394篇
  2016年   277篇
  2015年   458篇
  2014年   575篇
  2013年   596篇
  2012年   572篇
  2011年   621篇
  2010年   583篇
  2009年   810篇
  2008年   574篇
  2007年   650篇
  2006年   623篇
  2005年   635篇
  2004年   572篇
  2003年   560篇
  2002年   450篇
  2001年   421篇
  2000年   387篇
  1999年   329篇
  1998年   340篇
  1997年   321篇
  1996年   336篇
  1995年   285篇
  1994年   271篇
  1993年   214篇
  1992年   173篇
  1991年   97篇
  1990年   69篇
  1989年   49篇
  1988年   43篇
  1987年   18篇
  1986年   14篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1979年   15篇
  1978年   1篇
  1977年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
HUANG Hao  FU Hong 《地震地质》2019,41(6):1413-1428
Using the seismic waveform data of Xiaowan seismic network and Yunnan seismic network, we determined the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015 by generalized polarity and amplitude technique. We inverted tectonic stress field of the Xiaowan reservoir before impounding, using the focal mechanisms of 36 earthquakes(ML ≥ 3.0)from Jun. 2005 to Dec. 2008 and CAP solutions of 58 earthquakes(ML ≥ 4.0)collected and the solutions in the Global Centroid Moment Tensor(GCMT)catalog; We inverted local stress field of the reservoir-triggered earthquake clustering area, using 51 earthquakes(ML ≥ 2.5)from Jan. 2009 to Dec. 2015. Focal mechanisms statistics show that, the Weixi-Qiaohou Fault is the seismic fault. Focal mechanisms were strike-slip type in initial stage, but normal fault type in later stage. Focal depths statistics of 51 earthquakes(ML ≥ 2.5)show that, the average value of focal depths in period Ⅰ, period Ⅱ and period Ⅲ are 8.2km, 7.3km and 7.8km respectively and the standard deviations are 4.3km, 3.5km and 6.0km respectively. The average value of focal depths is basically stable in different period, only the standard deviation is slightly different. Therefore, there is not positive connection between focal depth and deviation of focal mechanisms. What's more, there are 2 earthquakes(number 46 and number 47 in Fig.5 and Table 3)with almost the same magnitude, epicenter and focal depth, but they have different faulting types as normal and strike-slip. The focal mechanism of event No.46 is strike:302°, dip:40° and rake:-97° for plane Ⅰ, however, the focal mechanism of event No.47 is strike:292°, dip:82° and rake:140° for plane Ⅰ. Likewise, earthquake of number 3 and number 18 have similar characteristic. Therefore, the obvious focal mechanism difference of similar earthquake pair indicates the complexity of Weixi-Qiaohou Fault. Considering the quiet-active character of reservoir-triggered earthquakes, we discussed the change of local stress field in different period. The σ1 of tectonic stress field was in the near-south direction, with a dip angle of 14° before the impoundment, however, the direction of σ1 of local stress field changed continuously, with the dip angle getting larger after the impoundment. The direction of σ1 of local stress field of reservoir-triggered earthquake clustering area is close to the strike of Weixi-Qiaohou Fault, and reservoir impoundment increased the shear stress in the fault, so the weakening of fault was beneficial to trigger earthquakes. Comprehensive analysis suggests that fluid permeation and pore pressure diffusion caused by the water impounding, and the weakening of fault caused by local stress field are the key factors to trigger earthquake in the Xiaowan reservoir.  相似文献   
62.
地震预报研究的主攻方向: 动力数值预测   总被引:1,自引:0,他引:1  
尽管地震预测是一个举世公认的国际性科学难题,怛在强化各种减轻地震灾害措施的同时,仍须把地震的监测和预报作为中国地震局最为重要的任务。为此,需要高举攻克地震预测难题的旗帜,打破长期以来地震预测研究徘徊不前的局面。我们必须充分认识近年来地球物理观测技术和计算机技术所取得的重大进步和发展态势,并在此基础上制定地震预测研究的发展战略。以GPS为代表的空间对地观测技术,巨型高分辨率宽频带流动地震台阵观测技术以及电磁阵列观测技术的发展趋势表明,从布网观测走向阵列观测已经成为21世纪地球物理观测研究发展的基本方向。上述高新技术和计算机数值模拟技术的发展为地震动力学研究提供了前所未有的技术基础。为此,需要积极借助数值天气预报的经验,打破经验性地震预测的局限,把研究的注意力尽快转向以动力学为基础的地震数值预报。以地震数值预报为目标的GPS阵列地壳形变连续观测,高分辨率地壳上地幔结构探测,地壳动力学,地震孕育和破裂过程的理论、模拟试验和实际观测,数据同化和计算软件的开发应成为今后研究发展的重点。现在的问题是,需要我们强化多学科,多部门的组织协调,尽早在有条件的地区开展地震动力学数值预报的科学试验和相关的理论研究。这必将极大地促进我国地震科学基础研究的发展和地震预报水平的提高。  相似文献   
63.
本文概要介绍了强震仪主要技术参数、强震台网计算机系统及强震记录情况。  相似文献   
64.
???ò??GPS????8????????????????????????????????????????????????????????:?????????-?????????γ?????200 km???????????????????????-????????????γ?????75 km??????????????????????????????????????????????????????????????????????????????????????????????  相似文献   
65.
大震速报应用软件   总被引:1,自引:0,他引:1  
大震速报应用软件和跃时孙文斌(中国黑龙江省157009牡丹江地震台)概述近年来随着计算机的普及,许多台站配备了计算机。用其处理地震数据,并将结果经调制解调器,再经过电话线传输到北京,这对于决策部门指导抗震减灾工作有着重要意义。由此我们研制了一个可以在...  相似文献   
66.
为了解2021-09-16四川泸县MS6.0地震的发震机理,加强对四川盆地内地震活动性的认识,基于四川及周边地区地震台网的宽频带地震资料,利用CAP方法反演获得泸县地震的震源机制解和矩心深度;同时,基于震前四川盆地内155个震源机制解,利用MSATSI程序反演得到泸县地震震前四川盆地内的构造应力场。结果显示,泸县地震矩心深度为3 km,矩震级为MW5.3,滑动性质为纯逆冲。震中附近震前构造应力最大主压应力和中间主压应力都近乎水平,最大主压应力在震中附近走向101°,此构造应力状态下,优势滑动断层为纯逆冲性质,与泸县地震震源机制一致。根据震源位置和性质、震前构造应力场及震中附近的断层性质推测,泸县地震发震断层不是华蓥山断裂,而是其分支和余脉之间极浅的盖层滑脱型断层。  相似文献   
67.
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang MS5.7 earthquake in 2012 and the Ludian MS6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.  相似文献   
68.
以影响地电观测质量的主要因素及映震能力作为地电台站监测能力的主要评价指标,对安徽省5个地电台站的监测能力进行了综合评价,得到了安徽省地电前兆的基本情况,为安徽省未来的地电台站建设奠定了基础.  相似文献   
69.
70.
The lack of earthquake-induced liquefaction features in Late Wisconsin and Holocene sediments in Genesee, Wyoming, and Allegany Counties suggests that the Clarendon–Linden fault system (CLF) did not generate large, moment magnitude, M≥6 earthquakes during the past 12,000 years. Given that it was the likely source of the 1929 M 4.9 Attica earthquake, however, the Clarenden–Linden fault system probably is capable of producing future M5 events. During this study, we reviewed newspaper accounts of the 1929 Attica earthquake, searched for earthquake-induced liquefaction features in sand and gravel pits and along tens of kilometers of river cutbanks, evaluated numerous soft-sediment deformation structures, compiled geotechnical data and performed liquefaction potential analysis of saturated sandy sediments. We found that the 1929 M 4.9 Attica earthquake probably did not induce liquefaction in its epicentral area and may have been generated by the western branch of the Clarendon–Linden fault system. Most soft-sediment deformation structures found during reconnaissance did not resemble earthquake-induced liquefaction features, and even the few that did could be attributed to non-seismic processes. Our analysis suggests that the magnitude threshold for liquefaction is between M 5.2 and 6, that a large (M≥6) earthquake would liquefy sediments at many sites in the area, and that a moderate earthquake (M 5–5.9) would liquefy sediments at some sites but perhaps not at enough sites to have been found during reconnaissance. We conclude that the Clarendon–Linden fault system could have produced small and moderate earthquakes, but probably not large events, during the Late Wisconsin and Holocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号