首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
地球物理   38篇
地质学   24篇
海洋学   13篇
自然地理   2篇
  2023年   2篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
71.
Cohesive sediments exhibit complex rheological behaviors that are non-Newtonian and time-dependent when subjected to external loading. This paper presents the results of an investigation on the theological properties of three types of dense cohesive sediments, collected from the mouth of the Yangtze River, the shoal of the ttangzhou Bay, and the Yangcheng Lake in China. A set of rheological parameters (including viscosity, yield stress, etc.) was studied based on experiments that were conducted with a RheolabQC rheometer. Measurements of the flow curves, shear stress-time responses, and yield stresses were made. The solid-liquid transition of the dense cohesive sediments occurred both in the shear rate ramp tests and the shear stress ramp tests. This transition was not direct, but it was mediated by a transitional deformation regime or stress plateau. Both the Herschel-Bulkley model and Carreau model were able to describe the theological behavior of dense cohesive sediments, and the empirical expressions for calculating the parameters in these models were obtained by a dimensional and regression analysis. The yield stresses determined by the shear stress ramp test and by the vane method were compared and discussed. The influence of the water content on the rheological properties of dense cohesive sediments was considered.  相似文献   
72.
A laterally averaged two-dimensional numerical model is used to simulate hydrodynamics and cohesive sediment transport in the Tanshui River estuarine system. The model handles tributaries as well as the main stem of the estuarine system. Observed time series of salinity data and tidally averaged salinity distributions have been compared with model results to calibrate the turbulent diffusion coefficients. The overall model verification is achieved with comparisons of residual currents and salinity distribution. The model reproduces the prototype water surface elevation, currents and salinity distributions. Comparisons of the suspended cohesive sediment concentrations calculated by the numerical model and the field data at various stations show good agreement. The validated model is applied to investigate the tidally averaged salinity distributions, residual circulation and suspended sediment concentration under low flow conditions in the Tanshui River estuarine system. The model results show that the limit of salt intrusion in the mainstem estuary is located at Hsin-Hai bridge in Tahan Stream, 26 km from the River mouth under Q75 flow. The null point is located at the head of salt intrusion, using 1 ppt isohaline as an indicator. The tidally averaged sediment concentration distribution exhibits a local maximum around the null point.  相似文献   
73.
An important element within the Defra funded Estuary Process Research project “EstProc” was the implementation of the new or refined algorithms, produced under EstProc, into cohesive sediment numerical models. The implementation stage was important as any extension in the understanding of estuarine processes from EstProc was required to be suitable for dissemination into the wider research community with a level of robustness for general applications demonstrated. This report describes work undertaken to implement the new Manning Floc Settling Velocity Model, developed during EstProc. All Manning component algorithms could be combined to provide estimates of mass settling flux. The algorithms are initially assessed in a number of 1-D scenarios, where the Manning model output is compared against both real observations and the output from alternative settling parameterisations. The Manning model is then implemented into a fully 3-D computational model (TELEMAC3D) of estuarine hydraulics and sediment transport of the Lower Thames estuary. The 3-D model results with the Manning algorithm included were compared to runs with a constant settling velocity of 0.5 mm s−1 and settling velocity based on a simple linear multiplier of concentration and with the above mentioned observations of suspended concentration. The findings of the 1-D case studies found the Manning empirical settling model could reproduce 93% of the total mass settling flux observed over a spring tidal cycle. The floc model fit was even better within the turbidity maximum (TM) zone. A constant 0.5 mm s−1 only estimated 15% of the TM mass flux, whereas the fixed 5 mm s−1 settling rate over-predicted the TM mass flux by 47%. Both settling velocity as a simple linear function of concentration, and van Leussen's method, did not fare much better estimating less than half the observed flux during the various tidal and sub-tidal cycle periods. When the Manning-settling model was applied to a layer with suspended concentrations approaching 6 g l−1, it calculated 96% of the observed mass flux. The main conclusions of the implementation exercise were that it was feasible to implement a complex relationship between settling velocity and concentration in a 3-D computational model of estuarine hydraulics, without producing any significant increase in model run times or reducing model stability. The use of the Manning algorithm greatly improved the reproduction of the observed distribution of suspended concentration both in the vertical and horizontal directions compared to the other simulations. During the 1-D assessments, the Manning-settling model demonstrated flexibility in adapting to a wide range of estuarine environmental conditions (i.e. shear stress and concentration), specifically for applied modelling purposes.  相似文献   
74.
The current study is the first step in a systematic experimental research on the erosion behaviour of sand-mud mixtures. It concerns the effect of a varying sand content and clay mineralogy on the porosity, structure, strength and permeability of artificially generated sediment mixtures. The permeability of a sediment mixture is an especially significant parameter concerning the type of erosion that occurs. It determines if the erosion of the bed is either a drained or an undrained process, respectively indicating surface erosion or mass erosion. Measurements on various mixtures concerning the consolidation coefficient and the permeability have been executed. Results show a distinct transition of behaviour between a sand-silt dominated network structure and a clay-water matrix. The occurrence of these two types of structures appears to depend on the porosity of the volume fraction of sand related to silt, which is, therefore, an important parameter concerning the type of erosion. Finally, the study provides a valuable data set that can be used as a reference for following stages of this research on the erosion behaviour of natural cohesive sediments.  相似文献   
75.
《国际泥沙研究》2020,35(6):563-575
Erosion of mixed cohesive and noncohesive sediments is studied using the erosion test instrument SEDFlume. The sediment mixtures are composed of well-sorted quartz sand (0.25–0.5 mm) and one of the three used muds: kaolinite, kaolinite-bentonite and Mississippi River muds. The mud contents cover from 0 to 100%. The measured data of erosion rate and bed shear stress are used to examine the segmented linear, nonlinear, and exponential erosion models. The parameters of each erosion model are related to the physical properties of sediment mixtures, including clay fraction, mud fraction, mixture dry density, and mud dry density. It is found that the three models can fit well with the data, and their parameters have strong relations with the mud fraction and mud dry density, to a less extent with the clay fraction, but not with the mixture dry density.  相似文献   
76.
Field injectivity tests are widely used in the oil and gas industry to obtain key formation characteristics. The prevailing approaches for injectivity test interpretation rely on traditional analytical models. A number of parameters may affect the test results and lead to interpretation difficulties. Understanding their impacts on pressure response and fracture geometry of the test is essential for accurate test interpretation. In this work, a coupled flow and geomechanics model is developed for numerical simulation of field injectivity tests. The coupled model combines a cohesive zone model for simulating fluid-driven fracture and a poro-elastic/plastic model for simulating formation behavior. The model can capture fracture propagation, fluid flow within the fracture and formation, deformation of the formation, and evolution of pore pressure and stress around the wellbore and fracture during the tests. Numerical simulations are carried out to investigate the impacts of a multitude of parameters on test behaviors. The parameters include rock permeability, the leak-off coefficient of the fracture, rock stiffness, rock toughness, rock strength, plasticity deformation, and injection rate. The sensitivity of pressure response and fracture geometry on each parameter is reported and discussed. The coupled flow and geomechanics model provides additional advantages in the understanding of the fundamental mechanisms of field injectivity tests.  相似文献   
77.
The analyses of retaining walls in California showed many backfills are coarse material with some cohesion. In this investigation, seismic response of cantilever retaining walls, backfilled with dirty sandy materials with up to 30 kPa cohesion, is evaluated using fully dynamic analysis. The numerical simulation procedure is first validated using reported centrifuge test results. The validated methodology is then used to investigate the effects of three earthquake ground motions including Kobe, Loma Prieta, and Chi-Chi on seismic response of retaining walls. In addition, the input peak ground acceleration values are varied to consider a wide range of earthquake acceleration intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号