首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14223篇
  免费   3063篇
  国内免费   1188篇
测绘学   358篇
大气科学   407篇
地球物理   11702篇
地质学   2897篇
海洋学   428篇
天文学   22篇
综合类   1109篇
自然地理   1551篇
  2024年   18篇
  2023年   133篇
  2022年   390篇
  2021年   532篇
  2020年   525篇
  2019年   616篇
  2018年   603篇
  2017年   565篇
  2016年   458篇
  2015年   619篇
  2014年   766篇
  2013年   848篇
  2012年   734篇
  2011年   800篇
  2010年   721篇
  2009年   995篇
  2008年   746篇
  2007年   850篇
  2006年   820篇
  2005年   790篇
  2004年   730篇
  2003年   715篇
  2002年   557篇
  2001年   506篇
  2000年   470篇
  1999年   397篇
  1998年   390篇
  1997年   378篇
  1996年   375篇
  1995年   315篇
  1994年   303篇
  1993年   242篇
  1992年   186篇
  1991年   105篇
  1990年   73篇
  1989年   55篇
  1988年   46篇
  1987年   23篇
  1986年   20篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   15篇
  1978年   3篇
  1977年   2篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
921.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
922.
A seismic design procedure that does not take into account the maximum and cumulative plastic deformation demands that a structure is likely to undergo during severe ground motion could lead to unsatisfactory performance. In spite of this, current design procedures do not take into account explicitly the effect of low‐cycle fatigue. Based on the high correlation that exists between the strength reduction factor and the energy demand in earthquake‐resistant structures, simple procedures can be formulated to estimate the cumulative plastic deformation demands for design purposes. Several issues should be addressed during the use of plastic energy within a practical performance‐based seismic design methodology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
923.
The concept of distributed strain‐sensing techniques has been proposed in our recent research, which was dedicated to utilizing the strain distributions throughout the full or partial areas of structures to detect arbitrary and unforeseen damage. An algorithm not requiring a detailed analytical model is presented for damage locating in flexural structures through the direct use of dynamic responses recorded by distributed long‐gauge strain sensors. The modal macro‐strain vector (MMSV), which has been proven to have a mapping relation with displacement mode shape, can be extracted directly from macro‐strain time‐series data, from which a damage evaluating index can be derived and used as an indicator for locating damage. Numerical examples are simulated to verify the sensitivity and effectiveness of the index in different cases. Furthermore, experimental investigations on a cantilevered beam with various long‐gauge fibre optic sensors placements are carried out to examine the feasibility and applicability of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
924.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
925.
Earthquake early warning systems (EEWS) seem to have potential as tools for real‐time seismic risk management and mitigation. In fact, although the evacuation of buildings requires warning time not available in many urbanized areas threatened by seismic hazard, they may still be used for the real‐time protection of critical facilities using automatic systems in order to reduce the losses subsequent to a catastrophic event. This is possible due to the real‐time seismology, which consists of methods and procedures for the rapid estimation of earthquake features, as magnitude and location, based on measurements made on the first seconds of the P‐waves. An earthquake engineering application of earthquake early warning (EEW) may be intended as a system able to issue the alarm, if some recorded parameter exceeds a given threshold, to activate risk mitigation actions before the quake strikes at a site of interest. Feasibility analysis and design of such EEWS require the assessment of the expected loss reduction due to the security action and set of the alarm threshold. In this paper a procedure to carry out these tasks in the performance‐based earthquake engineering probabilistic framework is proposed. A merely illustrative example refers to a simple structure assumed to be a classroom. Structural damage and non‐structural collapses are considered; the security action is to shelter occupants below the desks. The cost due to a false alarm is assumed to be related to the interruption of didactic activities. Results show how the comparison of the expected losses, for the alarm‐issuance and non‐issuance cases, allows setting the alarm threshold on a quantitative and consistent basis, and how it may be a tool for the design of engineering applications of EEW. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
926.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
927.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
928.
A methodology has been proposed which can be used to reduce the number of ground motion records needed for the reliable prediction of the median seismic response of structures by means of incremental dynamic analysis (IDA). This methodology is presently limited to predictions of the median IDA curve only. The reduction in the number of ground motion records needed to predict the median IDA curve is achieved by introducing a precedence list of ground motion records. The determination of such a list is an optimization problem, which is solved in the paper by means of (1) a genetic algorithm and (2) a proposed simple procedure. The seismic response of a simple, computationally non‐demanding structural model has been used as input data for the optimization problem. The presented example is a three‐storey‐reinforced concrete building, subjected to two sets of ground motion records, one a free‐field set and the other a near‐field set. It is shown that the median IDA curves can be predicted with acceptable accuracy by employing only four ground motion records instead of the 24 or 30 records, which are the total number of ground motion records for the free‐field and near‐field sets, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
929.
930.
We infer the groundwater-level anomalies associated with a hypothetical preslip prior to the anticipated M 8 Tokai earthquake, and evaluate the detectability of the anomalies using data from seven groundwater wells. We evaluate the detectability of the anomalies under the following assumptions: (1) an Mw 5.5–6.5 aseismic preslip event occurs at the plate boundary in and around the hypothetical focal zone of the Tokai earthquake; (2) the total amount of the strain step at each observation associated with the preslip can be calculated by tensile and shear faulting based on the dislocation model; (3) a normalized strain history associated with the preslip is defined from the results of numerical simulations based on rate- and state-dependent friction laws; and (4) the groundwater-level anomaly prior to the earthquake is proportional to the estimated history of the strain change associated with the preslip. We investigate the detection time of the anomaly at seven wells given an Mw 5.5, 6.0, or 6.5 aseismic preslip at one of the 272 grid points in and around the area of the hypothetical focal zone of the Tokai earthquake. As a result, over the time interval between 1 and 48 hours prior to the hypothetical Tokai earthquake, we are able to detect at each of the seven wells a hypothetical Mw 6.5 preslip at 10–86 of the 272 grid points, an Mw 6 preslip at 0–19 grid points, and an Mw 5.5 preslip at 0–5 grid points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号