首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
  国内免费   3篇
地球物理   50篇
地质学   26篇
海洋学   12篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   10篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有89条查询结果,搜索用时 343 毫秒
31.
Increase in saturation in natural clayey slopes along coastal zones as a result of tsunamis or storm surges may cause flow slides or failures. One of the common treatments is to increase the overall stability by soil replacement and/or re-compaction, which is often difficult to implement, expensive, and, most importantly, damages the natural vegetation. In this paper, remedial effectiveness of a relatively economical and environmentally friendly method involving insertion of geotextile strips with drainage capability into natural clayey slopes is evaluated through a series of centrifuge tests. The test results demonstrate the effectiveness of the employed technique to increase the stability of slopes and their drainage capability as well as to reduce the deformations under surcharge loadings.  相似文献   
32.
Understanding the response of partially saturated earth structures under various static and dynamic loads is important for the design and construction of economical and safe geotechnical engineering structures. In this study, the numerical approach is used to understand the dynamics of partially saturated soils. The mathematical equations governing the dynamics of partially saturated soils are derived based on the theory of mixtures and implemented within a finite element framework. The stress–strain behavior of the soil is represented by an elasto-plastic constitutive model for unsaturated soil based on bounding surface concept and the moisture-suction behavior is modeled using van Genuchten model. Fully coupled finite element simulations are performed to study the response of partially saturated soil embankment under earthquake loading and validated with centrifuge test results available in the literature. The predicted displacement responses are in good agreement with the measured responses. The pore water pressure, pore air pressure, matric suction, the degree of saturation in various elements and the response of the embankment under different initial moisture content are also discussed.  相似文献   
33.
Seismic ground faulting is a severe hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipe behavior, most frequently via numerical modeling and simulation. However, there has been little, if any, physical modeling and tests to verify the numerical modeling approaches and assumptions. This paper presents results of five pairs of centrifuge tests designed to investigate the influence of various factors on the behavior of buried high-density polyethylene (HDPE) pipelines subjected to strike-slip faulting. Parameters considered are the soil moisture content, fault offset rate, relative burial depth (H/D), and pipe diameter. The centrifuge test results show that pipe behavior, specifically pipe strain, is nominally not affected by the soil moisture content and fault offset rate when the pipe is subjected to strike-slip faulting. On the other hand, the burial depth ratio (H/D) and pipe diameter influence peak pipe strain, and in some cases, the ground soil failure pattern.  相似文献   
34.
In this paper, modal parameters of a layered soil system comprising of a soft clay layer overlying a dense sand layer are identified from accelerometer recordings in a centrifuge test. For the first time, the subspace state space system identification (4SID) method was employed to identify the natural frequencies, damping ratios, and complex valued mode shapes while considering the non-proportional damping in a soil system. A brief review of system identification concepts needed for application of the 4SID techniques to structural modal identification is provided in the paper. The identified natural frequencies were validated against those estimated by transfer function spectra. The computed normal mode shapes were compared with closed-form solutions obtained from the one-dimensional shear wave propagation equation. The identified modal parameters were then employed to synthesize state space prediction models which were subsequently used to simulate the soil response to three successive base motions. The identified models captured acceleration time-histories and corresponding Fourier spectra reasonably well in the small and moderate shaking events. In the stronger third shaking event, the model performed well at greater soil depths, but was less accurate near the surface where nonlinearities dominated.  相似文献   
35.
In this study, a series of centrifuge tests, modeling reverse fault rupture with 60° dip angle, were conducted in a dry sandy soil with a tunnel embedded in the soil layer. The test results showed that the tunnel and soil responses depended on the tunnel position, soil relative density and tunnel rigidity. Tunnels appeared be able to deviate the fault rupture path, while this deviation may be associated with significant rotation and displacement of the tunnel. However, a deeper tunnel was able to diffuse the shear deformation to a wider zone with an unsmooth surface displacement which may cause severe damage to the surface structures. Finally, the tunnel rotation, the location of the fault outcropping, the vertical displacement of the ground surface, the effect of tunnel rigidity on fault rupture path and surface displacement and the effect of soil relative density on fault–tunnel interaction were reported and discussed in this study.  相似文献   
36.
Three dynamic centrifuge model tests were conducted at an acceleration of 80g to simulate the seismic responses of level sand deposits: an intra-silt layer was embedded in two of these sand deposits at different depths. The effects of a low-permeability intra-silt layer on the build-up and dissipation of excess pore-water pressure, surface settlement, and the related liquefaction mechanism were investigated. An intra-silt layer modifies the seismic response of the sand deposit, reduces the extent of liquefaction, and thus decreases surface settlement. The depth of the intra-silt layer is one of the factors influencing the seismic responses of the sand deposits. The magnitude of the surface settlement is proportional to the degree of liquefaction in the sand deposit. The high positive hydraulic gradients appearing in both the intra-silt layer and in the sand deposit lying on the intra-silt layer can break a thinner or weaker top layer and result in sand boiling. Our visual animation of the ratio of the excess pore-water pressure and the lateral displacement revealed that the liquefaction front travels upward during shaking and the solidification front travels upward after shaking.  相似文献   
37.
Foreword     
The main objective of this special issue of the Bulletin of Earthquake Engineering is to bring to the earthquake engineering community the outcomes of the research project QUAKER (Quantification and Reduction of Seismic Risk through the Application of Advanced Geotechnical Engineering Techniques) financed by European Commission under contract EVG1-CT-2002-00064.  相似文献   
38.
Centrifuge modeling of a dry sandy slope response to earthquake loading   总被引:3,自引:0,他引:3  
This paper presents results of a series of centrifuge models of dry, sandy slopes excited by earthquakes and cyclic waves under 50g centrifugal acceleration to investigate the dynamic performance of slopes. Test results of four model slopes with different profiles stimulated by the adjusted El Centro earthquakes with various peak accelerations reveal the response amplification mechanism of the slope. By calculating the response spectra of recorded acceleration time histories, it was observed that the different frequency contents of the input event were amplified to different degrees. The model slope showed a completely different response under the cyclic wave with a constant frequency and amplitude in that the spectral amplification factor curves had no prominent peak values. These findings suggest that dynamic centrifuge tests excited with a real ground motion are able to better reflect the response characteristics of a slope rather than the tests with cyclic loading.  相似文献   
39.
Three centrifuge model tests were performed in normally consolidated Speswhite Kaolin to study the penetration of suction anchors in soft clay. The suction anchors could be penetrated by means of underpressure to a depth of about 12.4 to a little more than 14.5 times the diameter. When the anchors were penetrated by underpressure, all clay displaced by the skirt moved into the anchor. At a penetration depth of about half the maximum penetration depth, the volume of the soil heave inside the anchor actually increased more than the volume of the displaced clay. When a material coefficient of 1.5 against plug failure was mobilized, more than the clay displaced by the skirts had accumulated inside the anchor. The penetration resistance increased by 42 and 26% during rest periods of 4.5 and 0.8 days prototype time, respectively. Some uncertainty in the shear strength of the clay beds gave some uncertainty with respect to the interpretation, but the observed behaviour generally confirmed the theoretical analyses.  相似文献   
40.
In response to the discussion, this closure presents a new set of analyses to confirm the satisfactory performance of the recently-developed transparent Flexible Shear Beam (FSB) container and its limitations. The lateral deformations of the box estimated using Finite Element analyses and measured during centrifuge experiments were compared. The maximum deformation to height ratio was sufficiently small to retain at-rest lateral earth pressures for loose to medium-dense cohesionless soils and all cohesive materials. In addition, higher frequency modes of vibration were estimated for the container, and were found to occur where the earthquake energy is less significant. Further, the box is expected to approximately replicate free field conditions under 1-D horizontal shaking for the range of soil properties under investigation. Overall, the deformation and vibration analyses indicate that the selection of appropriate rubber material properties and boundary conditions are critical when analyzing the performance of the container.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号