首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   90篇
  国内免费   119篇
测绘学   18篇
大气科学   4篇
地球物理   191篇
地质学   407篇
海洋学   81篇
天文学   4篇
综合类   17篇
自然地理   49篇
  2024年   2篇
  2023年   8篇
  2022年   9篇
  2021年   14篇
  2020年   20篇
  2019年   18篇
  2018年   23篇
  2017年   19篇
  2016年   19篇
  2015年   23篇
  2014年   38篇
  2013年   33篇
  2012年   22篇
  2011年   36篇
  2010年   18篇
  2009年   48篇
  2008年   40篇
  2007年   34篇
  2006年   32篇
  2005年   28篇
  2004年   31篇
  2003年   23篇
  2002年   29篇
  2001年   23篇
  2000年   15篇
  1999年   12篇
  1998年   14篇
  1997年   10篇
  1996年   16篇
  1995年   15篇
  1994年   22篇
  1993年   20篇
  1992年   11篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
排序方式: 共有771条查询结果,搜索用时 15 毫秒
71.
在对扬子板块埃迪卡拉系陡山沱组不同相区的25条代表性剖面野外研究基础上,通过沉积岩石学和岩相序列特征的系统分析,认为陡山沱组沉积时期曾发生3次二级海平面升降事件。依据3个海平面升降转换面,可识别出3个层序底界面:(1)陡山沱组底部与下伏南华系南沱组及其同期层位的冰碛杂砾岩之间的界面;(2)在浅水沉积区陡山沱组中部和上部分别出现喀斯特侵蚀面;(3)在深水沉积区相应层序界面为岩相结构转换面。依据火山灰锆石U-Pb同位素年龄,可将陡山沱组层序地层划分为2个半二级层序或超层序(SS1,SS2和SS3-TST),其中SS1时限为35Ma(635~600Ma),SS2时限为35Ma(600~565Ma),SS3-TST时限为14Ma(565~551Ma)。陡山沱组底部广泛发育的盖帽白云岩底和3个层序内的最大海泛面可以作为4个相对等时面,结合事件沉积标志层,可建立扬子板块陡山沱组从浅水沉积区至深水沉积区等时性二级层序地层划分对比格架。研究结果表明,三峡地区陡山沱组四段式划分方案不适用于整个扬子板块内陡山沱组的区域地层划分和对比。因而,建议扬子板块陡山沱组应该以二级层序地层为基础,结合化学地层和生物地层进行综合划分和对比。陡山沱组新的地层划分对比格架为研究陡山沱组古地理演变和编制该时期高精度的岩相古地理图奠定了基础。  相似文献   
72.
平板冻结器超压事故的发生主要由于使用设备时操作不当和设备质量不过关而引起。对设备超压原理分析和平板冻结器在不同温度条件下的充液比例进行理论计算 ,结果表明 ,停机时 ,在室温 35℃的条件下 ,蒸发器中的充液比例达到 0 .86 0 5时 ,会引起蒸发器发生超压而爆炸。当蒸发器中充液比例在 0 .86 0 5以下时发生的超压事故 ,肯定存在设备质量不过关的因素 ;而当充液比例在 0 .86 0 5或以上时发生的超压事故 ,则是由误操作引起。。  相似文献   
73.
74.
本文较全面地探讨了东南地洼区反映深部构造特点的地球物理特征(波速结构,地温分布,电性,密度,重、磁场异常),综合分析了该区地洼构造形成、演化的力源机制,讨论了地洼构造与板块构造的力源机制关系问题。  相似文献   
75.
Although the Korean Peninsula is locatednear several great earthquake regions suchas NE China and SW Japan, it has neversuffered from catastrophic earthquakes forthe last 2000 years according to historicaland instrumental records. We investigatedthe low seismicity of Korea based on thehypothesis of the Baikal-Korea Plate (BKP)or Amurian Plate movement which isinitiated by the Baikal Rift Zone spreadingin a southeastward motion with acounter-clockwise rotation due to thecollision of the Indian Plate against theEurasian Plate. Many disastrous earthquakesof NE China, SW Japan and Sakhalin releaselarge amounts of seismic energy along theboundary of the Baikal-Korea Plate. It isnecessary to compute the released seismicenergy along the presumed boundary of theBaikal-Korea Plate compared to the KoreanPeninsula in order to estimate themicro-plate boundary. The total energyreleases (1900–1999) from the majordisastrous earthquakes (M6.0) alongthe Baikal-Korea plate are about103–104 times as much as theKorean Peninsula (M3.0). The focalmechanisms for the intra-continentalearthquakes near and/or along theBaikal-Korea Plate boundary of NE China, SW Japan, Sakhalin and Mongolia mostlyrepresent the horizontal motions of theright-lateral strike slip type, indicatingthat the Baikal-Korea Plate is acounter-clockwise and transcurrent motion. The relative displacement vectors of GPS(global positioning system) also indicatedthat the Baikal-Korea Plate movescounter-clockwise around the KoreanPeninsula. These factors may indicate thatthe Korean Peninsula is not located at thePlate boundary, but just within a margin ofthe Baikal-Korea Plate which movessoutheastward with a counter-clockwiserotation from the Baikal Rift Zone in NEAsia. Therefore there is no enoughaccumulated strain to generate largeearthquakes in the Korean Peninsula and itmakes the Korean Peninsula free fromseismic hazard of large catastrophicearthquakes.  相似文献   
76.
Robert Kerrich  Ali Polat   《Tectonophysics》2006,415(1-4):141-165
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone–granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then “resurfaced” by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41–65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111–124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite–basalt plateau sequences erupted from deep mantle plumes and bimodal basalt–dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites–Mg andesites- and Nb-enriched basalts.Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to  350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone–granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to  2.7 Ga: Kenorland or Ur  2.7–2.4 Ga; Columbia  1.6–1.4 Ga; Rodinia  1100–750 Ma; and Pangea  230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological–geochemical–seismic records endorse the operation of plate tectonics since the early Archean.  相似文献   
77.
本文通过利用ITRF2005框架速度场以及IGS参考站近两年观测数据解算所得速度场对南美板块的运动及形变特征进行分析。结果表明,南美板块整体以约12.4mm/a的速率向北西方向运动,其欧拉矢量参数与NNR-NULVEL1A模型基本一致。形变特征表现为中南部区域西缘因纳兹卡板块俯冲向东凹陷,东侧受大西洋中脊海底扩张推力向西运动,东西向的挤压使其约以22mm/a的速度收缩并阻碍其北向运动。板块南端则受南极洲板块挤压向北西运动。  相似文献   
78.
The evolution of east coast of India sis discussed within the ambit of clearly identifiable four major tectonic stages which had a profound effect in shaping the tectonic grain of the east coast basins. The evolutionary process began with rift related crustal extension between India and Sri Lanka as a consequence of Africa-Antarctica rifting and development of Natal Basin. An arm of this rift led to initial extension in the Cauvery Basin and failed. Later, the India-West Australia rift propagated further in southwesterly direction initiating Mahanadi and Krishna-Godavari Basins. This extension was an oblique one with Nayudupeta high acting as pivot. The oblique extension followed by asymmetric seafloor spreading developed transpression along India-Sri Lanka and Antarctica junction, resulting in a NNW-SSE trending transcurrent fault along which Antarctica moved southward. Subsequently, entire east coast evolved through a more or less uniform post rift stage.  相似文献   
79.
A detailed palaeomagnetic study of Cretaceous age volcanic and sedimentary arc rocks from central Cuba has been carried out. Samples from 32 sites (12 localities) were subjected to detailed demagnetisation experiments. Nineteen sites from the Los Paso, Mataguá, Provincial and Cabaiguán Formations yielded high unblocking temperature, dual polarity directions of magnetisation which pass the fold tests with confidence levels of 95% or more and are considered to be primary in origin. The palaeomagnetic inclinations are equivalent to palaeolatitudes of 9°N for the Aptian, 18°N for the Albian. A synfolding remanence identified in 5 sites from the younger Hilario Formation indicates a late Cretaceous remagnetisation at a palaeolatitude of 16°N. Our results are in good agreement with previous palaeogeographic models and provide the first high quality palaeomagnetic data demonstrating the gradual northward movement of the Cretaceous Volcanic Arc throughout the Cretaceous. The declination values obtained all indicate significant and similar amounts of anticlockwise rotation from the oldest sequences studied through to the late Cretaceous remagnetisation. This rotation is most likely related to collision of the arc with the North American plate and transpressional strike slip movement along the northern margin of the Caribbean plate as it progressed eastwards into the large Proto-Caribbean basin.  相似文献   
80.
A fault was traced along the southwestern margin of the Shatsky Rise. It extends to land where it crosses the Mountainous Crimea. Interpretation and analysis of marine seismic and magnetic survey data, as well as geological data on land, allow stating that the fault originated during the rift evolution stage of the East Black Sea Basin. Currently, the fault is in the sea and is a channel for migrating hydrocarbon fluids. Another fault was traced from the West Caucasus into the sea, where it separates the Shatsky Rise into two structural units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号