首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11237篇
  免费   2705篇
  国内免费   478篇
测绘学   194篇
大气科学   19篇
地球物理   11096篇
地质学   1627篇
海洋学   106篇
天文学   11篇
综合类   947篇
自然地理   420篇
  2024年   37篇
  2023年   134篇
  2022年   263篇
  2021年   429篇
  2020年   369篇
  2019年   401篇
  2018年   406篇
  2017年   394篇
  2016年   276篇
  2015年   459篇
  2014年   582篇
  2013年   599篇
  2012年   572篇
  2011年   625篇
  2010年   582篇
  2009年   817篇
  2008年   576篇
  2007年   652篇
  2006年   623篇
  2005年   636篇
  2004年   571篇
  2003年   562篇
  2002年   451篇
  2001年   422篇
  2000年   388篇
  1999年   329篇
  1998年   340篇
  1997年   321篇
  1996年   336篇
  1995年   285篇
  1994年   271篇
  1993年   214篇
  1992年   174篇
  1991年   97篇
  1990年   69篇
  1989年   49篇
  1988年   43篇
  1987年   17篇
  1986年   14篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1979年   15篇
  1978年   1篇
  1977年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
581.
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   
582.
Recent fluid monitoring work shows that the contents of mantle-derived CO_2,He and CH_4 increased anomalously in 2002 and 2003. The 3He/4He ratio of the deep-fault-type Jinjiang hot springs increased highly anomalously in 2003, and then decreased in 2004. The 3He/4He ratio from the thermal-reservoir-type Changbaijulong hot springs increased slowly in 2003, and the increase continued in 2004. The mantle-derived He content of the He released from the Changbaijulong springs increased obviously in 2004. The anomaly of the released gases and the isotopic He was consistent with the trends of seismic activities in the Tianchi volcanic area between 2002 and 2004. The abnormal release of the Jinjiang hot springs apparently decreased after the seismic activities ceased in the second half of 2004, while the abnormal release from the Changbaijulong increased significantly after these seismic activities. It shows that the abnormal release of magmas-derived gases from the thermal-reservoir-type springs lags behind that of the deep-fault-type springs. These characteristics may be of great significance for identifying deep magmatic activity and predicting volcanic earthquakes in the future.  相似文献   
583.
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood.  相似文献   
584.
The 0S2~0S54 spheroidal modes of Earth’s free oscillations, triggered by the great Sumatra-Andaman earthquake of 26 December 2004 are retrieved from VHZ data recorded by seven upgraded stations of China Digital Seismograph Network (CDSN). We compare these spheroidal modes with theoretical free oscillation spectra calculated from the Preliminary Reference Earth Model (PREM) and find a coincidence between their periods. Spectral splitting phenomenon is observed obviously in 0S2, 0S3, 0S4, 2S1 and 1S2 free oscillation modes. What is most noticeable is that the oscillation mode 2S1 is reported for the second time (the first time by Rosat et al) without any data stacking. We simulated the split singlet of 0S2 mode on seven CDSN stations based on general focal mechanism and seismic moment of the earthquake. The result shows that seismic moment of the earthquake can reach 1023 N.m. We also find that the recording of Earth’s free oscillations carries abundant information of source mechanism and earthquake location, which is applicable to the detailed study of source rupture parameters.  相似文献   
585.
1985年在甘肃文县屯寨乡洋汤寨的天池庙的大樑上发现了一条新的关于1879年7月1日武都8级地震的新的历史记载。该记载表明武都8级地震在这里的地震烈度至少达到了Ⅹ度。  相似文献   
586.
This paper presents two numerical case studies of medium and strong motion events, namely Loma-Prieta 1989 and Hyogoken-Nambu (Kobe) 1995. These simulations were performed using CyberQuake model. The cyclic elastoplastic constitutive model is fully detailed in the companion paper. Through these case studies, we demonstrate the importance of using appropriate constitutive modelling when the part played by nonlinear phenomena is preponderant. The need to account for 3D kinematics (i.e. the three components of the input motion), is also demonstrated, even though a 1D geometry is considered, as the plastic coupling existing between components of motion during the earthquake, strongly affects the seismic soil response.  相似文献   
587.
This study investigates the effects of the Fennoscandian earthquake that occurred on 4 November 1898 (GMT) on Tornio in Northern Finland. The extra fire inspection conducted in the town on 21, 22 and 23 November 1898 provided insight into the failures caused by this low-magnitude earthquake. The building stock was of timber with masonry stone components. More than 30 heating units sustained damage. The macroseismic intensity in Tornio is estimated at I = 6 (European Macroseismic Scale).  相似文献   
588.
Source mechanism and source parameters of May 28, 1998 earthquake,Egypt   总被引:1,自引:0,他引:1  
On May 28, 1998, a moderate size earthquake of mb 5.5 occurred offshore the northwestern part of Egypt (latitude 31.45°N and longitude 27.64°E). It was widely felt in the northern part of Egypt. Being the largest well-recorded event in the area for which seismic data from the global digital network are available, it provides an excellent opportunity to study the tectonic process and present day stress field occurring along the offshore Egyptian coast. The source parameters of this event are determined using three different techniques: modeling of surface wave spectral amplitudes, regional waveform inversion, and teleseismic body waveform inversion. The results show a high-angle reverse fault mechanism generally trending NNW–SSE. The P-axis trends ENE–WSW consistently with the prevailed compression stress along the southeastern Hellenic arc and southwestern part of the Cyprean arc. This unexpected mechanism is most probably related to a positive inversion of the NW trending offshore normal faults and confirms an extension of the back thrusting effects towards the African margin. The estimated focal depth ranges from 22 to 25 km, indicating a lower crustal origin earthquake owing to deep-seated tectonics. The source time function indicates a single source with rise time and total rupture duration of 2 and 5 s, respectively. The seismic moment (M o) and the moment magnitude (M w) determined by the three techniques are 1.03 × 1017 Nm, 5.28; 1.24 × 1017 Nm, 5.33; and 1.68 × 1017 Nm, 5.42; respectively. The calculated fault radius, stress drop, and the average dislocation assuming a circular fault model are 7.2 km, 0.63 Mpa, and 0.11 m, respectively.  相似文献   
589.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
590.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号