首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   2篇
  国内免费   13篇
地球物理   70篇
地质学   52篇
海洋学   2篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   7篇
  2008年   28篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   11篇
  2001年   6篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
21.
该类型矿床形成过程,主要可划分为火山喷流沉积和潜火山气液叠加改造两大成矿、蚀变期。从破火山口演化规律入手,分析研究了环形火山构造对矿床形成的制约作用。  相似文献   
22.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   
23.
Abstract. The Pantingan Gold System (PGS) is a vein-type epithermal prospect exposed within the summit caldera of Mount Mariveles, Bagac, Bataan (Luzon), Philippines. It consists of nine major veins, eight of which trend NW-WNW and distributed in an en echelon array. The eastern tips of these veins appear to terminate near the NE-NNE trending Vein 1, which is located in the easternmost portion of the prospect. Metal assay results on vein and wall rock samples indicate concentrations of 0.01 to 1.1 g/ton Au, trace to 34 g/ton Ag and 0.003 to 0.02 % Cu. Andesite lava flow deposits host the PGS. Potassium-Argon isotopic dating of these andesites yields anarrow age range of 0.88± 0.13 to 1.13 ± 0.17 Ma. The surface exposures of the veins (up to 5 m wide) are encountered at different levels between 590–740 masl. These commonly display a massive texture although banding prominently occurs in Vein 1. The veins consist of gray to cream-colored crystalline and chalcedonic quartz and amorphous silica. Pyrite is the most ubiquitous sulfide mineral. It occurs either as fine-grained disseminations and aggregates in quartz or as infillings in vugs. Calcite, marcasite and bornite are also occasionally noted in the deposit. The prospect shows silicic, argillic, propylitic and advanced argillic alteration zones. Silicic and argillic alterations are confined in the immediate wall rocks of the quartz veins. Argillic alteration grades to a propylitic zone farther away from the veins. The advanced argillic alteration zone, indicated by a suite of acidic clay minerals that include kaolin-ite, dickite, pyrophyllite and alunite, might have been imprinted during the late stages of gold deposition. As a whole, the PGS displays geological and mineralogical features typical of gold mineralization in a low sulfidation, epithermal environment. It is also representative of a young, tectonically undisturbed gold deposit.  相似文献   
24.
The Tiribí Tuff covered much of the Valle Central of Costa Rica, currently the most densely populated area in the country (∼2.4 million inhabitants). Underlying the tuff, there is a related well-sorted pumice deposit, the Tibás Pumice Layer. Based on macroscopic characteristics of the rocks, we distinguish two main facies in the Tiribí Tuff in correlation to the differences in welding, devitrification, grain size, and abundance of pumice and lithic fragments. The Valle Central facies consists of an ignimbritic plateau of non-welded to welded deposits within the Valle Central basin and the Orotina facies is a gray to light-bluish gray, densely to partially welded rock, with yellowish and black pumice fragments cropping out mainly at the Grande de Tárcoles River Gorge and Orotina plain. This high-aspect ratio ignimbrite (1:920 or 1.1×10−3) covered an area of at least 820 km2 with a long runout of 80 km and a minimum volume outflow of 25 km3 (15 km3 DRE). Geochemically, the tuff shows a wide range of compositions from basaltic-andesites to rhyolites, but trachyandesites are predominant. Replicate new 40Ar/39Ar age determinations indicate that widespread exposures of this tuff represent a single ignimbrite that was erupted 322±2 ka. The inferred source is the Barva Caldera, as interpreted from isopach and isopleth maps, contours of the ignimbrite top and geochemical correlation (∼10 km in diameter). The Tiribí Tuff caldera-forming eruption is interpreted as having evolved from a plinian eruption, during which the widespread basal pumice fall was deposited, followed by fountaining pyroclastic flows. In the SW part of the Valle Central, the ignimbrite flowed into a narrow canyon, which might have acted as a pseudo-barrier, reflecting the flow back towards the source and thus thickening the deposits that were filling the Valle Central depression. The variable welding patterns are interpreted to be a result of the lithostatic load and the influence of the content and size of lithic fragments.  相似文献   
25.
A new model for the formation and relief evolution of the Danube Bend, northern Hungary, is discussed on geomorphological and volcanological grounds. We propose that the present-day U-shaped loop of the Danube Bend was partly inherited from the horseshoe caldera morphology of Keserűs Hill volcano, a mid-Miocene (ca 15 Ma) lava dome complex with an eroded central depression open to the north. According to combined palaeogeographical data and erosion rate calculations, the drainage pattern in the Danube Bend region was formed when Pleistocene tectonic movements resulted in river incision and sedimentary cover removal. Formation of the present curvature of the river was due to the exhumation of the horseshoe-shaped caldera as well as the surrounding resistant volcaniclastic successions (i.e. Visegrád Castle Hill) and a hilltop lava dome (Szent Mihály Hill). The process accelerated and the present narrow gorge of the Danube Bend was formed by very rapid, as young as late Quaternary differential tectonic uplift, also enhancing the original volcanic morphology. On the basis of comparative long-term erosion-rate calculations, we estimated successive elevation changes of the volcanic edifice, including partial burial in late Miocene time. In comparison with various order-of-magnitude changes, the mid-to-late Quaternary vertical movements show increased rates and/or base level drop in the Pannonian Basin.  相似文献   
26.
 A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska. Received: 3 December 1997 / Accepted: 11 April 1998  相似文献   
27.
Mount Hasan is a double-peaked stratovolcano, located in Central Anatolia, Turkey. The magmas erupted from this multi-caldera complex range from basalt to rhyolite, but are dominated by andesite and dacite. Two terminal cones (Big Mt. Hasan and Small Mt. Hasan) culminate at 3253 m and 3069 m respectively. There are four evolutionary stages in the history of the volcanic complex (stage 1: Kecikalesi volcano, 13 Ma, stage 2: Palaeovolcano, 7 Ma, stage 3: Mesovolcano and stage 4: Neovolcano). The eruptive products consist of lava flows, lava domes, and pyroclastic rocks. The later include ignimbrites, phreatomagmatic intrusive breccias and nuées ardentes, sometimes reworked as lahars. The total volume is estimated to be 354 km3, the area extent 760 km2. Textural and mineralogical data suggest that both magma mixing and fractional crystallization were involved in the generation of the andesites and dacites. The magmas erupted from the central volcanoes show a transition with time from tholeite to calc-alkaline. Three generations of basaltic strombolian cones and lava flows were emplaced contemporaneously with the central volcanoes. The corresponding lavas are alkaline with a sodic tendency.  相似文献   
28.
Abstract Several linear magnetic anomalies over continental crust have been identified in and around the Japanese Islands. The anomalies are probably related to island arc tectonic structures, but identifying specific sources has been difficult. Several deep holes were drilled in and around Aso caldera, where a linear anomaly occurs along an active fault. One drillhole located on the linear anomaly encountered a zone of highly magnetized and altered basement rocks at least 100 m thick at a depth of ∼1000 m. The other hole was located away from the anomaly and did not encounter any high-magnetic zones. Rocks from the zone have exceptionally strong remanent magnetization (several tens of A/m) sub-parallel to the present field. AF demagnetization experiments indicated that the magnetization is hard and stable. Magnetic modeling indicates that the linear anomaly is caused mainly by this layer. Microscopic examination of core samples shows that the highly magnetized zone includes secondary magnetic minerals and abundant hydrothermal alterations. Temperatures determined by fluid inclusions and down-hole temperatures show that the temperature of the highly magnetized zone was elevated in the past relative to surrounding rocks. The high temperature could destroy primary magnetic minerals and replace them with secondary magnetic minerals. Thus, the past hydrothermal system may have enhanced thermo-chemical remanent magnetization. The results can produce a model indicating that there was a past hydrothermal system related to the tectonic structure.  相似文献   
29.
In the Long Valley caldera, where seismicity has continued essentially uninterrupted since mid-1980 and uplift is documented, samples of water from hot, warm, and cold springs have been collected since September, 1982, and their222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for their radioelement contents, because their uranium is the ultimate source of the222Rn in the water.The222Rn concentration in the springs varies inversely with their temperature and specific conductance. High concentrations (1500 to 2500 picocuries per liter) occur in dilute cold springs on the margins of the caldera, while low contents (12 to 25 pCi/l) occur in hot to boiling springs. Springwater radon concentrations also correlate slightly with the uranium content of the encompassing rocks.A continuous monitoring system was installed in August, 1983, at a spring issuing from basalt, to provide hourly records of radon concentration. A gamma detector is submerged in a natural pool, and we have observed that the radioactivity measured in this manner is due almost entirely to the222Rn concentration of the water. Initial operation shows diurnal and semidiurnal variations in the222Rn concentration of the springwater that are ascribed to earth tides, suggesting that those variations are responding to small changes in stress in the rocks encompassing the hydrologic system.  相似文献   
30.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号