首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   19篇
  国内免费   56篇
测绘学   40篇
大气科学   4篇
地球物理   70篇
地质学   195篇
海洋学   12篇
综合类   3篇
自然地理   17篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   9篇
  2019年   6篇
  2018年   14篇
  2017年   14篇
  2016年   7篇
  2015年   9篇
  2014年   20篇
  2013年   27篇
  2012年   19篇
  2011年   7篇
  2010年   9篇
  2009年   20篇
  2008年   17篇
  2007年   27篇
  2006年   29篇
  2005年   23篇
  2004年   14篇
  2003年   6篇
  2002年   9篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1987年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有341条查询结果,搜索用时 218 毫秒
31.
在地球化学样品检测工作中,Ag、B、Sn等难分析元素通常采用传统的交流电弧发射光谱法(摄谱仪),随着地球化学样品数量的增加以及对检测结果质量要求的提高,该方法操作复杂、分析过程繁琐的问题与日常大量样品分析的矛盾日益突出,多道式电弧直读发射光谱也开始在行业内应用。本文基于先进的数字光源技术和CCD全谱型光谱仪技术,改进了电弧发生系统、分光系统和检测系统,将电弧激发光源与Paschen-Runge型全谱CCD光谱仪结合,研制了一款新型的台式全谱直读型电弧发射光谱仪E5000。E5000型电弧发射光谱仪通过激光定位结合程控电极技术,自动调整电极位置,提高了采谱过程的精度控制;利用CCD全谱技术获得了激发样品的全谱信息,可轻易实现光谱信号的背景扣除和干扰校正;且无需再次测定黑度,直接获得分析结果;同时结合内标法和标准加入法,可以进一步提高复杂基体样品的分析精准度。应用研制的光谱仪对水系沉积物和土壤样品进行检测,Ag、B、Sn元素的检出限分别达到了0.01μg/g、0.65μg/g、0.16μg/g,在分析水系沉积物、土壤时检测精密度基本小于10%,优于当前的摄谱法和多道电弧直读光谱法,满足了地球化学样品检测质量要求。  相似文献   
32.
古亚洲构造域侵入岩时——空演化框架   总被引:3,自引:0,他引:3  
长期以来,许多著名学者提出众多模型,讨论古亚洲构造域的构造演化和造山(带)结构样式。但是,认识上的分歧很大,特别是关于主洋盆的空间位置和闭合时间。本文主要基于中国侵入岩大地构造编图(1∶250万)和研究这个侧面,参与讨论。1侵入(岩)弧,碰撞和后造山岩石组合,随时间由西向东变新,同时,主构造带走向从近东西向转为近南北向,暗示古亚洲洋的闭合最终转化为太平洋构造域。2位于主洋盆北侧的是宽阔的西伯利亚克拉通南缘的沟——弧——盆系统;位于南侧的西面为南天山被动陆缘,中部为塔里木克拉通北缘的窄的沟——弧——盆系统,东面为华北克拉通北缘的活动陆缘。3主体侵入(岩)弧的内部分散地分布着从Pt3开始的残留弧和残留oφ,被看做是主体弧的基底。4传统上认为的构造相对稳定的"地块",本文基于它们的侵入(岩)组合归为残留弧,认为不是构造上相对稳定的性质,并未采用"地块"的术语,而把它们看作洋陆转换过程中早期残余岛弧处理。5提出主洋盆的识别有三个标志,(a)洋闭合最晚,(b)或为双向俯冲(当两侧均为活动大陆边缘时),或单向俯冲(当一侧为被动陆缘,另一侧为活动陆缘时),(c)长寿命的洋以及洋闭合带常常发育地中海式残余洋发育的陆——陆碰撞早阶段。6该构造域主要发育Pt3——T的侵入(岩)弧和oφ,支持S¨engor等关于大量新生陆壳的推测,亦与大量花岗岩类为εNd(t)"+"值符合。新生陆壳的形成又暗示,长时间的洋俯冲必导致地幔的冷却,以及大量榴辉岩进入地幔,最终导致高密度的地幔下降流形成,必导致洋的闭合与随后的陆——陆碰撞,形成最初的东亚大陆。  相似文献   
33.
利用超声速矩形湍流导管和等离子电弧加热器模拟了发动机燃烧室内流和高超声速飞行器外壁面外流热环境,进行了平板表面冷壁热流测量和燃烧室内壁材料考核试验。结果表明:由于辐射换热的影响,在选取的两个典型来流条件下,发动机燃烧室内流热环境下的冷壁热流比外流热环境下的高出21%和40%,但是冷壁热流的增量基本相当,约为0.70~0.80MW/m2。随着冷壁热流的增加,辐射换热产生的热流增量的影响力会逐渐减小。材料考核时,相同配方的C/SiC复合材料在内流热环境下的表面温度高出约400℃,背面温度高出约90℃,这种差异对于发动机燃烧室内壁面材料考核至关重要,必须在材料考核试验中加以考虑。   相似文献   
34.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   
35.
Robert Kerrich  Ali Polat   《Tectonophysics》2006,415(1-4):141-165
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone–granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then “resurfaced” by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41–65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111–124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite–basalt plateau sequences erupted from deep mantle plumes and bimodal basalt–dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites–Mg andesites- and Nb-enriched basalts.Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to  350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone–granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to  2.7 Ga: Kenorland or Ur  2.7–2.4 Ga; Columbia  1.6–1.4 Ga; Rodinia  1100–750 Ma; and Pangea  230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological–geochemical–seismic records endorse the operation of plate tectonics since the early Archean.  相似文献   
36.
介绍了通过数字化仪手扶跟踪及扫描仪半自动采集现有地形图等高线的步骤,再通过内插方法生成DEM,并对如何提高DEM精度提出了解决方案。  相似文献   
37.
ArcGIS环境下地图符号库的实现   总被引:1,自引:0,他引:1  
地图符号作为地图语言在地图的制作和输出中起着非常重要的作用。但是,由于ArcGIS中的数据输入、编辑、查询与制图模块Arc Map中自带的符号库不能满足我国基本比例尺地图输出的要求,因此,必须为它建立符合地图图式要求的符号库。对于在Arc GIS中不能实现的符号,如电力线,将由Arc Object来制作完成。应用VB程序设计将电力线做出并且加入到Arc GIS环境中去。本文重点论述了Arc GIS环境下地图符号库的设计方法,并分别讨论了点状符号、线状符号和面状符号的实现方式。  相似文献   
38.
The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA) in Iran. These rocks, mainly consisting of diorite and granodiorite, were emplaced during the Early Miocene. They are composed of varying proportions of plagioclase + K-feldspar + hornblende ± quartz ± biotite. Discrimination diagrams and chemical indices of amphibole phases reveal a calc-alkaline affinity and fall clearly in the crust-mantle mixed source field. The estimated pressure, derived from Al in amphibole barometry, is approximately 3 Kb. The granitoids are I-type, metaluminous and belong to the calc-alkaline series. They are all enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements and display geochemical features typical of subduction-related calc-alkaline arc magmas. Most crystal size distribution(CSD) line patterns from the granitoids show a non-straight trend which points to the effect of physical processes during petrogenesis.The presence of numerous mafic enclaves, sieve texture and oscillatory zoning along with the CSD results show that magma mixing in the magma chamber had an important role in the petrogenesis of Tafresh granitoids. Moreover, the CSD analysis suggests that the plagioclase crystals were crystallized in a time span of less than 1000 years, which is indicative of shallow depth magma crystallization.  相似文献   
39.
智慧城市实际上就是利用现代化信息技术,实现对城市的智慧管理。城市市政工程中地层智能开挖和智能施工是智慧城市运用现代化信息技术的重要标志。GIS三维可视化的主要工具之一就是Arc Scene,是三维可视化的展示平台。本文主要通过ArcEngine组件库,以钢企管线管理平台为例,利用多面片理论,详细地介绍了从三维地层的开挖区域选择,到开挖基坑的实现,再到施工量的计算整个流程,最终为城市或者工厂地下施工的设计者和决策者提供依据。  相似文献   
40.
The Volubilis Basin is located between two structural arcs formed by the Prerif Ridges that developed during and after sedimentation. The arcs correspond with W- to WSW-verging anticline culminations, limited, to the north by a NE-SW strike-slip lateral ramp. Sedimentary infill took place during two stages of ridge formation and propagation. The first stage occurred in the Middle Miocene-early Tortonian and was determined by the deposition of the Nappe Prérifaine in the northern part of the basin, and continental and marine sediments over the Prerif Ridges. The second one, Late Miocene in age (Tortonian–Messinian), corresponds to the sedimentation of calcarenites and bioclastic limestones at the basin edges, with a lateral transition to white and blue marls toward the center of the basin. There is clear evidence of synsedimentary deformation, suggesting the interaction of sedimentation and tectonics. Geophysical data allow us to characterize the stratigraphic architecture of the Volubilis Basin and the geometry of the top of the Paleozoic basement. An approximately N–S Tortonian–Messinian asymmetric depocenter is located close to the front of the eastern arc. This research illustrates the nucleation, progressive thrust bending and segmentation, and the propagation of folds interacting with sedimentation. Thrust nucleation agrees with Paleozoic basement highs under the detachment surface. The progressive development of these tectonic structures conditioned the formation, segmentation and final continentalization of the Volubilis Basin, which can be considered as a piggy-back basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号