首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   5篇
  国内免费   8篇
大气科学   8篇
地球物理   17篇
地质学   11篇
海洋学   6篇
天文学   1篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   
12.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
13.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

14.
Variations in fluid density can greatly affect fluid flow and solute transport in the subsurface. Heterogeneities such as fractures play a major role for the migration of variable-density fluids. Earlier modeling studies of density effects in fractured media were restricted to orthogonal fracture networks, consisting of only vertical and horizontal fractures. The present study addresses the phenomenon of 3D variable-density flow and transport in fractured porous media, where fractures of an arbitrary incline can occur. A general formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulation results are presented that show the verification of the new model formulation, for the porous matrix and for inclined fractures. Simulations of variable-density flow and solute transport are then conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the high-permeability fracture acts as a barrier for convection. Other simulations were run to investigate the influence of fracture incline on plume migration. Finally, tabular data of the tracer breakthrough curve in the inclined fracture is given to facilitate the verification of other codes.  相似文献   
15.
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600–700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.  相似文献   
16.
A numerical model for the computation of the wind field,air temperature and humidity in the atmospheric boundary layer (ABL) including the urbancanopy was developed for urban climate simulation. The governing equations of the modelare derived by applying ensemble and spatial averages to the Navier–Stokes equation, continuityequation and equations for heat and water vapour transfer in the air. With the spatial averagingprocedure, effects of buildings and other urban structures in the urban canopy can be accounted for byintroducing an effective volume function, defined as the ratio between the volume of air in acomputational mesh over the total volume of the mesh. The improved k - model accounts for the anisotropyof the turbulence field under density stratification. In the improved k - model, the transportof momentum and heat in the vertical direction under density stratification is evaluated based onthe assumption of a near-equilibrium shear flow where transport effects on the stresses andheat fluxes are negligible. The heating processes at surfaces of buildings and ground are alsomodelled. The comparison of the computational results obtained with the present modeland existing observational data and numerical models shows that the present model is capableof predicting the structure of turbulence in the urban canopy layer under density stratification.Numerical experiments with the new model show that the flow behaviour of the air in the urbancanopy layer is strongly affected by the existence of buildings and density stratification.  相似文献   
17.
Wind and temperature measurements from within and above a deep urban canyon (height/width = 2.1) were used to examine the thermal structure of air within the canyon, exchange of heat with the overlying atmosphere, and the possible impacts of surface heating on within-canyon air flow. Measurements were made over a range of seasons and primarily analysed for sunny days. This allowed the study of temperature differences between opposing canyon walls and between wall and air of more than 15°C in summer. The wall temperature patterns follow those of incoming solar radiation loading with a secondary daytime effect from the longwave exchange between the walls. In winter, the canyon walls receive little direct solar radiation, and temperature differences are largely due to anthropogenic heating of the building interiors. Cool air from aloft and heated air from canyon walls is shown to circulate within the canyon under cross-canyon flow. Roofs and some portions of walls heat up rapidly on clear days and have a large influence on heat fluxes and the temperature field. The magnitude and direction of the measured turbulent heat flux also depend strongly on the direction of flow relative to surface heating. However, these spatial differences are smoothed by the shear layer at the canyon top. Buoyancy effects from the heated walls were not seen to have as large an impact on the measured flow field as has been shown in numerical experiments. At night canyon walls are shown to be the source of positive sensible heat fluxes. The measurements show that materials and their location, as well as geometry, play a role in regulating the heat exchange between the urban surface and atmosphere.  相似文献   
18.
This review presents a synthesis of four decades of palsa studies based on field experiments and observations mainly in Fennoscandia, as well as laboratory measurements. Palsas are peat-covered mounds with a permanently frozen core; in Finnish Lapland, they range from 0.5 to 7 m in height and from 2 to 150 m in diameter. These small landforms are characteristic of the southern margin of the discontinuous permafrost zone. Palsa formation requires certain environmental conditions: long-lasting air temperature below 0°C, thin snow cover, and low summer precipitation. The development and persistence of their frozen core is sensitive to the physical properties of peat. The thermal conductivity of wet and frozen peat is high, and it decreases significantly as the peat dries and thaws. This affects the development of the active layer and makes its response to climate change complex. The insulating properties of dry peat during hot and dry summers moderate the thawing of the active layer on palsas. In contrast, humid and wet weather during the summer causes deep thawing and may destroy the frozen core of palsas. Ice layers in palsas have previously been interpreted as ice segregation features but because peat is not frost-susceptible, the ice layers are now reinterpreted as resulting from ice growth at the base of a frozen core that is effectively floating in a mire.  相似文献   
19.
The helicity, electromotive force and α-effect produced in a homogeneous, rapidly rotating, electrically conducting fluid by an isolated source of buoyancy at small Elsasser number are calculated, visualized and analyzed. Due to physical symmetries of the system, the integrals of helicity and electromotive force over all space are zero. However, each has a significant non-zero value when integrated over the cross section of the Taylor column. The local α-effect is found to be significantly anisotropic; it is strongest when the applied magnetic field is toroidal and the resulting EMF is parallel to the applied field.  相似文献   
20.
介绍了一种新型深海海洋平台——几何形Spar壳体概念和集成浮力桶立管支撑概念,并与常规Spar和桁架式Spar进行了比较。为测定多角形Spar和集成浮力桶在不同环境条件下运动响应的总体性能,设计并完成了在海洋工程水池中的模型试验,此类试验在国内尚属首次。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号