首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   0篇
测绘学   1篇
地球物理   11篇
地质学   10篇
天文学   174篇
自然地理   2篇
  2015年   1篇
  2014年   6篇
  2011年   37篇
  2010年   39篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   16篇
  2005年   41篇
  2004年   28篇
  2003年   15篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1978年   1篇
排序方式: 共有198条查询结果,搜索用时 906 毫秒
11.
We present values from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) of four fundamental disk-integrated spectrophotometric properties (bolometric Bond albedo, solar phase curve, phase integral, and geometric albedo at 7-15 different wavelengths in the λ = 0.35-5.1 μm range) for five mid-sized saturnian icy satellites: Rhea, Dione, Tethys, Mimas, and Enceladus. These values, which include data from the period 2004-2008 and add to past VIMS phase curves, include opposition surge effects at down to fractions of a degree in solar phase angle for several moons and extend to over double the solar phase angle coverage of the Voyager mission. We also present new rotational light curves for Rhea and Dione at 7 near-infrared bands not previously available in ground-based or spacecraft studies. The bolometric Bond albedos we derive are as follows: 0.48 ± 0.09 (Rhea), 0.52 ± 0.08 (Dione), 0.61 ± 0.09 (Tethys), 0.67 ± 0.10 (Mimas), and 0.85 ± 0.11 (Enceladus). We also provide breakdowns of the major photometric quantities in both leading and trailing hemispheres. These refined parameters can be used to construct future bolometric Bond albedo maps that will contribute to surface composition identification studies, as well as models of volatile transport and sublimation. Through such applications, these data will help to determine the physical properties of surface particles, how the E-ring affects the inner saturnian moons, what is responsible for the dark albedo patterns seen on Tethys, and if these moons (e.g., Dione) are geologically active.  相似文献   
12.
The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J. [1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6°. As compared to the 13-33° Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic.  相似文献   
13.
P. Descamps 《Icarus》2010,207(2):758-768
The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm3.  相似文献   
14.
The accurate simulation of complex dynamic phenomena requires the availability of advanced constitutive models capable of simulating a wide range of features of soil behaviour under cyclic loading. One possible strategy is to improve the capabilities of existing bounding surface plasticity models, as this framework is characterised by its modularity and flexibility. As a result, specific components of the formulation of this type of model may be adjusted to improve the reproduction of any aspect of soil behaviour deemed essential to the problem being analysed. In this paper, a series of computational studies are performed in order to establish the impact of expanding a bounding surface plasticity model for sands on its modelling capabilities and to suggest ways of mitigating the associated increase in complexity. Changes to three distinct aspects of the selected constitutive model are examined: the shape of the Critical State Line in p  e space, the expression used for calculating the hardening modulus and the form of the yield surface. It is shown that the introduced changes have the potential to increase significantly the ability to control how certain aspects of soil response, such as degradation of stiffness and flow liquefaction with limited deformation, are reproduced by the model. Moreover, this paper presents a systematic approach to the expansion of this type of constitutive model, establishing how alterations to the formulation of a model may be assessed in terms of improved accuracy and potential benefits.  相似文献   
15.
Tetsuya Tokano 《Icarus》2005,173(1):222-242
The latitudinal profile of near-surface air temperature on Titan retrieved by Voyager 1 has been difficult to understand and raised several speculations about possible exotic processes that might be occurring near Titan's surface, while the thermal properties of the surface itself are unknown. This study systematically investigates the seasonal and spatial variation of the surface temperature and air temperature in the lower troposphere by a 3-dimensional general circulation model for different putative surface types (porous icy regolith, rock-ice mixture, hydrocarbon lakes). For any viable surface type the surface temperature is unlikely to be constant through the year and should more or less vary seasonally and even diurnally, most likely by a few K. Recent observations of tropospheric clouds may be evidence of seasonal variation of the surface temperature and the model predicts in the case of solid surface the development of a convective layer with superadiabatic lapse rates near the surface exactly at those latitudes and seasons where clouds have been identified. The latitudinal profile of the surface temperature retrieved from Voyager 1 infrared spectra can be explained without invoking exotic effects, provided the thermal inertia of the surface is relatively small and/or the surface albedo is low. A dominance of water ice (high thermal inertia and high albedo) at the surface is unfavorable to reproduce the observation. The latitudinal gradient of the surface temperature is particularly large at the hydrocarbon lake surface due to low albedo and small surface drag. Local anomalies of the surface albedo or surface thermal inertia are likely to cause substantial inhomogeneities of the surface temperature. Quasi-permanent accumulation of stratospheric haze at both poles would create a perennial equator-to-pole contrast of the surface temperature, but also a substantially lower global-mean surface temperature due to an enhanced anti-greenhouse effect in summer. The air temperature in the lower troposphere exhibits a tiny latitudinal gradient and a pole-to-pole gradient due to the presence of a pole-to-pole Hadley circulation, indicating that the temperature within the planetary boundary layer may exhibit a vertical profile characteristic of season, location and scenario. There may be a shallow near-surface inversion layer in cold seasons and a shallow convective layer in warm seasons.  相似文献   
16.
We produced geologic maps from two regional mosaics of Galileo images across the leading and trailing hemispheres of Europa in order to investigate the temporal distribution of units in the visible geologic record. Five principal terrain types were identified (plains, bands, ridges, chaos, and crater materials), which are interpreted to result from (1) tectonic fracturing and lineament building, (2) cryovolcanic reworking of surface units, with possible emplacement of sub-surface materials, and (3) impact cratering. The geologic histories of both mapped areas are essentially similar and reflect some common trends: Tectonic resurfacing dominates the early geologic record with the formation of background plains by intricate superposition of lineaments, the opening of wide bands with infilling of inter-plate gaps, and the buildup of ridges and ridge complexes along prominent fractures in the ice. It also appears that lineaments are narrower and more widely spaced with time. The lack of impact craters overprinted by lineaments indicate that the degree of tectonic resurfacing decreased rapidly after ridged plains formation. In contrast, the degree of cryovolcanic resurfacing appears to increase with time, as chaos formation dominates the later parts of the geologic record. These trends, and the transition from tectonic- to cryovolcanic-dominated resurfacing could be attributed to the gradual thickening of Europa's cryosphere during the visible geologic history, that comprises the last 2% or 30-80 Myr of Europa's history: An originally thin, brittle ice shell could be pervasively fractured or melted through by tidal and endogenic processes; the degree of fracturing and plate displacements decreased with time in a thickening shell, and lineaments became narrower and more widely spaced; formation of chaos regions could have occurred where the thickness threshold for solid-state convection was exceeded, and can be aided by preferential tidal heating of more ductile ice. In a long-term context it is not clear at this point whether this inferred thickening trend would reflect a drastic change in the thermal evolution of the satellite, or cyclic or irregular episodes of tectonic and cryovolcanic activity.  相似文献   
17.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   
18.
I. Kulyk  K. Jockers 《Icarus》2004,170(1):24-34
We present the results of photometric measurements of the inner jovian satellites Thebe, Amalthea and Metis based on extensive optical observations taken from October 1999 to January 2002. The observations were made in the phase angle range from 8.1° to 0.3°. The Two-Channel Focal Reducer of the Max-Planck Institute for Aeronomy attached to the 2-m RCC telescope at Terskol Observatory (Pik Terskol, Northern Caucasus) was used in coronagraph mode. The observations were performed at a wavelength of 0.887 μm. Mean observational uncertainties corresponding to 1σ rms errors were 3% for the leading and trailing sides of Amalthea, 7 and 9% for the leading and trailing sides of Thebe and 9% for the leading side of Metis after taking into account the longitude brightness variations. Photometric data calibrated on an absolute scale were used to evaluate the near-opposition behavior of satellite brightness. All three satellites exhibit significant opposition brightening, but the strength of this effect, measured as the ratios of intensities at α1=1.6° and α2=6.7° does not vary significantly among these satellites. In order to measure the opposition surge parameters the empirical law proposed by Karkoschka and Hapke's model were used. The parameters of the satellite opposition effects are presented and discussed. The values of geometric albedos calculated with best-fit Hapke parameters are 0.096, 0.157, and 0.24 for Thebe, Amalthea, and Metis respectively. We found that the average leading/trailing ratios of surface reflectance at the measured phase angles are 1.53±0.05, 1.25±0.04, 1.04±0.08 for Amalthea, Thebe, and Metis.  相似文献   
19.
Scott T. Marshall 《Icarus》2005,177(2):341-366
Although a single model currently exists to explain the development of curved Europan cycloids, there have been no systematic studies of the range of morphologies and quantifiable geometric parameters of cycloidal features. We address variations in geometry along individual cycloid segments, characterizing differences in cusp styles and angles, and addressing the morphologic aspects of cycloid segments and cusps. In so doing, we illustrate how geometric and morphologic evidence imply a formation mechanism that differs from the existing model in several aspects. The current model states that cycloids are initiated as tensile fractures that grow in a curved path in response to rotating diurnal tidal stresses on Europa. However, the geometry of a cycloid cusp necessitates that shear stress was resolved onto the existing cycloid segment by the rotating diurnal stresses at the instant of cusp formation. Furthermore, we observe that cycloid cusps have a strikingly similar geometry to tailcracks that developed at the tips of many ridge-like strike-slip faults on Europa in response to shearing at the fault tip. We suggest that this similarity in geometries can be attributed to an identical formation mechanism whereby cycloid cusps form by a tailcracking process. We therefore present a revised, mechanically-based model for cycloid formation that retains the basic premise that crack growth is governed by diurnal stresses, but describes the development of cycloid cusps in response to resolved shear stresses at the tips of existing cycloid segments. The ratio of normal to shear stress at the time of tailcrack formation dictates the cusp angle and, over longer time periods, influences the morphologic evolution of the cycloid segment as it is repeatedly reworked by tidal stresses.  相似文献   
20.
W.M. Grundy  K.S. Noll 《Icarus》2005,176(1):184-191
Discovery of trans-neptunian object (TNO) satellites and determination of their orbits has recently enabled estimation of the size and albedo of several small TNOs, extending the size range of objects having known size and albedo down into the sub-100 km range. In this paper we compute albedo and size estimates or limits for 20 TNOs, using a consistent method for all binary objects and a consistent method for all objects having reported thermal fluxes. As is true for larger TNOs, the small objects show a remarkable diversity of albedos. Although the sample is limited, there do not yet appear to be any trends relating albedo to other observable properties or to dynamical class, with the possible exception of inclination. The observed albedo diversity of TNOs has important implications for computing the size-frequency distribution, the mass, and other global properties of the Kuiper belt derived from observations of objects' apparent magnitudes and may also point the way toward an improved compositional taxonomy based on albedo in addition to color.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号