首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   6篇
  国内免费   8篇
地球物理   31篇
地质学   18篇
海洋学   10篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   7篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有59条查询结果,搜索用时 593 毫秒
51.
Natural colloids are abundant in seawater and are an intermediary in the fate, transport and bioavailability of many trace elements. Knowledge of the pathways and mechanisms of the biological uptake of colloidal Fe and other Fe species is of paramount importance in understanding Fe limitation on marine phytoplankton and thus carbon sequestration in the ocean. Whether the natural colloids serve as a source for the biological Fe requirements of marine phytoplankton, or just as a sink for particle-reactive metals in the oceans remains largely unknown. This study examined the bioavailability of Fe bound with colloids from different regions to a coastal diatom (Thalassiosira pseudonana). Natural colloids were isolated by cross-flow ultrafiltration and radiolabeled with 59Fe before being exposed to phytoplankton. Control experiments were conducted to ensure that 59Fe radiolabeled onto the colloids remained mostly in the colloidal phase. Both the natural oceanic and coastal colloidal organic matter complexed Fe (1 nm–0.2 μm) can be biologically available to the marine diatom even though its uptake was lower than the low molecular weight counterparts. By comparing the measured Fe internalization fluxes and the calculated maximum diffusive uptake fluxes, it is evident that ligand exchange kinetics on the cell surface may control the internalization of macromolecular Fe. The calculated concentration factors under dark and light conditions were generally comparable. Colloidal Fe, as an important intermediary phase, can be actively involved in the planktonic food web transfer through biological uptake and regeneration processes. The bioavailable fraction of Fe may be substantially underestimated by only considering the truly dissolved Fe or overestimated when using the external fluxes, such as aerosol Fe, as the bioavailable fraction.  相似文献   
52.
Eighteen models with different levels of complexity for representing sorption, mass transfer, and biodegradation are used to simulate the biodegradation of toluene (primary substrate) and TCE (cometabolic substrate). The simulations are conducted for hypothetical completely mixed systems of various scenarios with regard to sorbent, microbial composition, and solute concentrations. The purpose of the suite of simulations is to investigate the sensitivity of different modeling approaches in simulating the bio-attenuation of co-existing solutes in sorbent-water systems. The sensitivity of results to the modeling approach depends on the biogeochemical conditions of the system. For example, the results are insensitive to the type of sorption model in systems with low sorption strength and slow biodegradation rates, and insensitive to the biodegradation rate model if mass transfer controlled. Differences among model results are generally greater when evaluated in terms of total mass removal rather than aqueous phase concentration reduction. The fate of the cometabolite is more sensitive to the proper consideration of co-solute effects than is the fate of the primary substrate. For a given system, graphical comparison of a characteristic mass transfer rate coefficient (αmt) versus a characteristic biodegradation rate coefficient (αbio) provides an indication of how sensitivity to the different processes may be expected to change with time and can guide the selection of an appropriate level of model complexity.  相似文献   
53.
The extractable fraction of aqueous colloidal C60 nanoparticles (nC60) was quantified using a liquid–liquid extraction method in the presence of five types of dissolved organic matter (DOM): Aldrich humic acid (AHA), Suwannee River fulvic acid (SFA), sodium dodecyl sulfate (SDS) micelle, liposomes composed of 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine (POPC), and bovine serum albumin (BSA). The changes in toluene extractable fraction highly depended on the type and dose of DOM. Whereas an environmentally relevant concentration of AHA, 2–20 mg L?1, was sufficient to reduce the nC60 fraction easily destabilized, much higher dose of fulvic acid was needed to result in the similar degree of stabilization. A big contrast between two types of self‐organized DOM, SDS micelle and POPC liposomes, was observed. Although SDS micelle significantly decreased the toluene extractable fraction of nC60 at the dose greater than its critical micelle concentration, no apparent decrease in toluene extractable fraction was found in the presence of POPC liposomes up to 3000 mg L?1. The toluene extractable fraction of nC60 in the presence of BSA rapidly decreases at lower doses then gradually decreased at higher doses. An equilibrium complexation model was proposed to quantitatively describe the decrease in the extractability of nC60 in the presence of DOM. The observed decrease in the extractability of nC60 was well explained by the model and the complexation of nC60 with DOM was thought to occur close to 1:1 molar ratio except for BSA. The association constants of nC60 with DOM were in the order of BSA, AHA, SFA, and SDS micelle, showing the differences in the affinity to nC60.  相似文献   
54.
Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356–0.4658 mg/L for Al; 0.0031–0.0050 mg/L for Co, 0.0019–0.0956 mg/L for Cr; 0.0028–0.3484 mg/L for Cu; 0.0489–0.3474 mg/L for Fe; 0.0033–0.0285 mg/L for Mn; 0.0056–0.0222 mg/L for Ni; 0.0265–0.4753 mg/L for Pb and 0.0052–0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist’s workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.  相似文献   
55.
56.
57.
Arsenic derived from mining activity may contaminate water, soil and plant ecosystems resulting in human health and ecotoxicological risks. In this study, exposure assessment of arsenic (As) in soil, spoil, pondwater and plants collected from the areas contaminated by mine tailings and spoils in and around the La Parrilla mine, Caceres province, Spain, was carried out using AAS method. Water solubility, bioavailability and soil–plant transfer coefficients of As and phytoremediation potential of plants were determined. Arsenic concentrations varied from 148 to 2,540 mg/kg in soils of site 1 and from 610 to 1,285 mg/kg in site 2 exceeding the guideline limit for agricultural soil (50 mg/kg). Arsenic concentrations in pond waters varied from 8.8 to 101.4 μg/l. High concentrations of water-soluble As in the soils that ranged from 0.10 to 4.71 mg/kg in site 1 and from 0.46 to 4.75 mg/kg in site 2 exceeded the maximum permitted level of water-soluble As (0.04 mg/kg) in agricultural soils. Arsenic concentrations varied from 0.8 to 149.5 mg/kg dry wt in the plants of site 1 and from 2.0 to 10.0 mg/kg in the plants of site 2. Arsenic concentrations in plants increased in the approximate order: Retama sphaerocarpa < Pteridium aquilinum < Erica australis < Juncus effusus < Phalaris caerulescens < Spergula arvensis in site 1. The soil–plant transfer coefficients for As ranged from 0.001 to 0.21 in site 1 and from 0.004 to 0.016 in site 2. The bioconcentration factor based on water-soluble As of soil varied from 3.2 to 593.9 in the plants of site 1 whereas it varied from 2.1 to 20.7 in the plants of site 2. To our knowledge, this is the first study in Europe to report that the fern species P. aquilinum accumulates extremely low contents of As in its fronds despite high As levels in the soils. Therefore, the S. arvensis, P. caerulescens and J. effusus plant species grown in this area might be used to partly remove the bioavailable toxic As for the purpose of minimization of mining impacts until hypothetical hyperaccumulating and/or transgenic plants could be transplanted for the phytoremediation of As contaminated soils.  相似文献   
58.
矿区土壤中重金属活动性评估方法的研究进展   总被引:60,自引:0,他引:60  
在过去很长一段时间里重金属含量的高低一直都被看作是土壤污染程度的一个重要指标。当化学相的概念被引入到环境科学领域后,人们才逐渐地认识到重金属在环境中的行为和作用,如活动性、生物可利用性、毒性等,用这些金属在环境中的总量来预测和解释是不确切的。为此,许多化学和生物的方法被用来描述土壤与沉积物中重金属的活性。文章对近年来在该领域内的主要研究工作进行了总结,并对其未来可能的发展方向提出了自己的见解。  相似文献   
59.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to surface soils. Such contamination can also directly affect human health when irrigated crops, such as rice, vegetable and fruits, are used for human consumption. Therefore, an understanding of the sorption and desorption behavior of As in surface soils is of high importance, because these processes regulate the bioavailability of As in the soil environment. In this study, we have collected soils from guava orchards of Baruipur, West Bengal, and characterized soil chemistry and batch sorption and desorption behavior in the laboratory. The sorption and desorption behavior of As in the soils were examined using the Langmuir and Freundlich sorption equation. Regression analysis of the soil chemical characteristics and sorption equation parameters were also performed. The results suggest that the sorption behavior of arsenate is highly dependent on soil characteristics, specifically organic carbon, clay and Al2O3 content of the soils. Whereas desorption behavior is critically influenced by the presence of high concentrations of amorphous and/or crystalline Fe2O3 in the soils. Retention of the significant portion of As in the soils (~ 84% of the total) suggests that As in the orchard soils may not be highly bioavailable to plants for uptake. However, more detailed studies will be required to ascertain the role of individual soil components on the As sorption and desorption processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号