首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   130篇
  国内免费   225篇
测绘学   11篇
大气科学   2篇
地球物理   141篇
地质学   657篇
海洋学   15篇
综合类   19篇
自然地理   15篇
  2024年   9篇
  2023年   22篇
  2022年   41篇
  2021年   33篇
  2020年   37篇
  2019年   43篇
  2018年   41篇
  2017年   33篇
  2016年   31篇
  2015年   29篇
  2014年   51篇
  2013年   68篇
  2012年   45篇
  2011年   35篇
  2010年   19篇
  2009年   37篇
  2008年   19篇
  2007年   31篇
  2006年   29篇
  2005年   16篇
  2004年   22篇
  2003年   27篇
  2002年   28篇
  2001年   13篇
  2000年   21篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   11篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有860条查询结果,搜索用时 265 毫秒
311.
2008年汶川8.0级地震发生的历史与现今地震活动背景   总被引:13,自引:5,他引:8       下载免费PDF全文
为了了解2008年5月12日四川汶川MS8.0地震发生的地震活动背景,本文综合历史与现代地震资料,从南北地震带中段及其邻区的视野研究了汶川地震前1~2千年的强震活动性,以及震前20年的地震活动性背景.结果主要表明:(1)至少在2008年之前的1100~1700年中,龙门山断裂带未发生M≥7的地震,相对其南、北两侧的其他活动断裂带(或段)形成一个地震空区,2008年汶川MS8.0地震发生在该空区中;(2)17世纪以来,在由龙门山断裂带大部分地区、川北岷江-虎牙断裂带以及甘南文县-武都断裂带组成的巴颜喀拉块体东边界上共发生了12次M=6.5~8.0地震,显示出一个已持续了近400年、逐渐加速的应变能释放过程,2008年汶川MS8.0地震属于该过程中两次巨大地震之一;(3)汶川地震前20年,龙门山断裂带中、南段不存在背景地震活动的平静,反而显示出比曾经发生过1879年MS8地震的甘南文县-武都断裂带还略高的地震活动背景水平;(4)2008年汶川地震的强度远远超出龙门山断裂带的历史最大地震,说明仅基于数百年至一、两千年的历史地震记载,远不足以正确评估较低滑动速率的、大型活动断裂带的潜在地震危险性.  相似文献   
312.
利用青藏高原东北缘玛多-共和-雅布赖人工地震测深剖面的沉积盖层及上地壳折射波Psed、Pg走时,使用正则化方法反演该剖面基底速度结构,并通过射线数分布、分辨率分析等手段分析反演结果的可靠程度,得到了沿剖面850km近地表沉积盖层及结晶基底结构性质及构造变化特征,揭示了巴颜喀拉块体中段、东昆仑—西秦岭褶皱带、祁连褶皱带东侧及阿拉善块体等四个一级地质构造单元以及各块体内部若干次级构造沉积盖层介质岩性及厚度,结晶基底性质及被改造特征,在此基础上分析了(沿测线)青藏高原东北缘与外围阿拉善块体、高原内部块体间上部地壳构造耦合以及与地表构造形态关系.  相似文献   
313.
为了获取青藏高原东北缘至鄂尔多斯地块的壳幔电性结构,研究祁连造山带、鄂尔多斯地块及六盘山构造带的构造变形,布设一条甘肃陇西至陕西黄陵的近东西向大地电磁测深剖面,获取了91个大地电磁测深点的响应.经过对全剖面观测资料的数据处理、分析及二维反演,获得了剖面壳幔电性结构模型.研究结果表明:剖面横向可划分为三个区块,分别对应祁连造山带、六盘山构造带与鄂尔多斯地块;祁连造山带东段可能残存沟弧盆体系的构造格架,青藏高原北东向生长可能是在这一先存格架上的叠加与改造;六盘山构造带壳幔结构复杂,以中地壳拆离断层为界,上地壳发育拆离断层系统而下地壳挤压缩短增厚;鄂尔多斯地块成层性较好,地块总体较为稳定,但局部经历了与地幔上涌相关的物质与结构再造.  相似文献   
314.
20多年来,中国海陆及邻域的地质地球物理调查在不断进步,尤其是海域取得很多新认识,但中国海陆及邻域的大范围编图,尤其是大地构造图,没有随之更新;中国海陆的编图还一直存在海陆不接、海域编图相比陆域落后的问题;亟需编制一幅中国海陆及邻域的大地构造图.1992年编制的"中国海域及邻区地质地球物理系列图"的大地构造图,运用以活动论为内涵的全球构造理论作为指导思想,对中国海区及邻域的大地构造特征做出了较好的诠释.最近,中国海陆地质地球物理系列图编制项目,把1:500万中国海陆及邻域大地构造格架图作为图种之一.在全球构造理论基础上发展而来的块体构造学说,作为本次编图的指导思想,根据其大地构造体系,板块和板块边界作为一级构造单元,块体和结合带(缝合带等)作为二级构造单元,结合系列图中重力图、磁力图、地质图等图件成果,以及最近的其他调查研究资料,完善了对特提斯在南海周边的界线、东海陆架的基底构造属性等认识,在研究区内共划分出了欧亚板块、菲律宾海板块和印度-澳大利亚三大板块,6个板块边界构造单元,30个块体、14个结合带和10个缝合带.  相似文献   
315.
油气矿权数据库建设是油气资源矿权资源管理最基本、最重要的基础工作。本文并以浙江油田为例,重点介绍了基于MAPGIS二次开发的矿权区块评价中数据库建设的主要内容、程序、技巧及更新,为开展系统矿权区块评价,开展矿权登记战略选区评价建立强大的技术支持。  相似文献   
316.
扬子陆块古-中元古代地质演化与Columbia超大陆重建   总被引:3,自引:0,他引:3  
扬子陆块在古-中元古代时期经历了较为强烈的岩浆-变质-沉积-成矿等地质事件,这些事件是理解该陆块陆壳演化和成矿效应内在联系及动力学的关键,也是探讨该陆块在Columbia超大陆中古地理重建的前提。本文以古-中元古代地质单元出露较为完整的扬子西南缘为重点研究对象,在总结已有资料的基础上,对扬子陆块古-中元古代时期地质事件进行剖析和讨论,明确了扬子陆块西南缘在古-中元古代时期经历了由Columbia超大陆初始裂解引起的陆内裂谷相关的沉积作用,岩浆侵位及矿产富集等地质过程。通过与全球陆块进行对比,发现相似的裂谷的相关沉积-岩浆-成矿事件在劳伦大陆西北部、澳大利亚北部及Siberian克拉通都有体现。本文认为扬子陆块在2. 4~2. 3 Ga通过增生拼贴到劳伦大陆Rae克拉通。在共同经历过Columbia超大陆聚合的峰期变质作用(2. 03~1. 81 Ga)之后,超大陆开始逐步裂解并形成大陆内部裂谷,最终在古元古代后期(~1. 66~1. 60 Ga)扬子陆块和Columbia超大陆主体分离。  相似文献   
317.
中天山地块南缘两类混合岩的成因及其地质意义   总被引:1,自引:1,他引:0  
王信水  江拓  高俊  高强  李继磊  张喜 《岩石学报》2019,35(10):3233-3261
中天山地块是位于中亚造山带西南缘的西天山造山带的重要组成块体,其基底演化和构造亲缘性对恢复西天山的增生造山方式和大地构造格局具有重要意义。混合岩在中天山地块的高级变质地体中广泛分布,是揭示中天山地块基底演化和构造属性的窗口。本文通过开展锆石U-Pb年代学和Hf同位素及岩石地球化学研究,确定了中天山地块南缘乌瓦门杂岩的两类条带状混合岩的原岩性质和形成时代以及混合岩化作用时代和成因机制。第一类条带状混合岩的原岩为中基性岩屑砂岩,混合岩化时代为~1. 8Ga,是在同期角闪岩相变质过程中通过变质分异形成的。第二类条带状混合岩的古成体包括黑云角闪斜长片麻岩和黑云斜长角闪片麻岩,原岩均形成于~2. 5Ga,并叠加~1. 8Ga角闪岩相变质作用,是洋陆俯冲背景下由俯冲洋壳或岩石圈地幔部分熔融形成。侵入古成体的变基性岩墙形成于~1. 72Ga,具有Fe-Ti玄武岩的地球化学特征,起源于后碰撞伸展背景下的软流圈地幔。该类混合岩的浅色体同时穿插古成体和变基性岩墙,呈现突变的野外接触关系,与区域内约787~785Ma混合岩化同期,即混合岩化作用是外来岩浆注入的结果,可能是造山带垮塌引发地壳深熔作用的产物。乌瓦门杂岩记录的~2. 5Ga岩浆活动、~1. 8Ga变质作用和~790Ma混合岩化作用可以和塔里木北缘进行对比,暗示中天山地块是一个具有确切新太古代-古元古代结晶基底的微陆块,并且和塔里木克拉通存在构造亲缘性。  相似文献   
318.
吴越  孔志岗  陈懋弘  张长青  曹亮  唐友军  袁鑫  张沛 《岩石学报》2019,35(11):3443-3460
扬子板块周缘铅锌多金属成矿带内分布着数以百计的沉积岩容矿型铅锌矿床,它们不仅是我国主要的铅锌矿产地,同时也是重要的稀散元素(Ge、Ga等)生产基地。本次研究采用LA-ICPMS技术分别测定了扬子板块西南缘的会泽铅锌矿床、金沙厂铅锌矿床、大梁子铅锌矿床,扬子板块北缘的马元铅锌矿床以及扬子板块东南缘的凤凰茶田锌(铅)汞矿床中闪锌矿的微量元素组成,以揭示闪锌矿中微量元素(稀散元素)的富集规律和赋存状态,并为矿床成因类型的厘定及稀散元素矿产资源综合利用提供更多依据。LA-ICPMS微量元素测定结果显示闪锌矿中不同微量元素(稀散元素)分布不均匀,但这些矿床中闪锌矿总体以富集稀散元素Ge、Ga、Cd,贫In、Se、Tl、Te为特征,其Fe、Mn含量要明显低于与岩浆热液有关的高温闪锌矿,指示了扬子板块周缘铅锌矿床可能形成于中-低温成矿流体,而与岩浆热液无直接的成因联系,此外这些矿床中闪锌矿富Ge贫In的特征与其他的密西西比河谷型铅锌矿床(MVT)一致。同时,本次研究综合分析了闪锌矿中不同微量元素(稀散元素)之间的相关关系,并与闪锌矿微量元素LA-ICPMS时间分辨率特征相结合,研究表明:这些铅锌矿床中稀散元素Ge可能主要通过3Zn2+?Ge4++2(Cu+,Ag+)和2Zn2+?Ge4++□(晶体空位)的替代方式进入闪锌矿,Ga在闪锌矿中富集机理主要为2Zn2+?(Cu,Ag)++(Ga,As,Sb)3+。此外,为进一步揭示不同成因类型铅锌矿床中稀散元素的富集规律,本文还系统对比了全球范围内不同类型铅锌矿床闪锌矿的稀散元素(均为LA-ICPMS数据)组成特征,并初步探讨了造成不同成因闪锌矿中稀散元素(Ge、Ga和In)差异性富集的主要控制因素,研究表明:(1) Ge在中低温盆地卤水成矿系统(MVT和SEDEX矿床)和岩浆-火山热液成矿系统(浅成脉状铅锌矿床和VMS矿床)形成的闪锌矿中均可能富集成矿,但中低温浅成脉状矿床中Ge的富集程度要明显高于高温脉状矿床,指示了成矿温度是控制闪锌矿中Ge富集的一个重要因素。(2)铅锌矿床闪锌矿中In主要为岩浆来源,In倾向于在成矿温度较高的岩浆及火山热液成因铅锌矿床中富集成矿,而壳源的MVT和SEDEX型铅锌矿床中闪锌矿均贫In。可见除形成温度外,成矿物质来源是决定闪锌矿是否富In的关键因素。(3)除矽卡岩型铅锌矿床外,其他不同成因类型、不同形成温度的铅锌矿床中闪锌矿均可能富Ga。矽卡岩型铅锌矿床闪锌矿具有明显的贫Ga、Ge的特征,这可能是由于矽卡岩化过程中稀散元素Ga、Ge大量进入早期矽卡岩矿物,进而导致了成矿流体以及随后形成的闪锌矿中Ga、Ge的贫化。综上所述,闪锌矿中稀散元素富集与否和富集程度受成矿物质来源、成矿流体性质以及流体演化过程等多因素的综合控制。(4)扬子板块周缘铅锌矿床闪锌矿的微量元素(稀散元素)组成特征指示了它们形成于中低温成矿环境,稀散元素的富集规律与其它MVT型铅锌矿床类似。  相似文献   
319.
汤祖明 《探矿工程》2019,46(6):41-46
旬邑—宜君区块位于鄂尔多斯盆地伊陕斜坡南与渭北隆起结合部,目前处于开发初期阶段。由于三叠系延长组地层沉积环境及后期构造运动的原因,形成地层不整合接触裂缝和地层应力裂缝,造成在钻井与固井过程中易发生漏失,导致水泥浆上返不足,上部井段未得到有效封固。本文通过对工区地层情况、钻进方式和设备、水泥浆浆柱结构以及施工工艺方面进行研究,探究漏失发生的主要因素。为达到提高油气层封固质量的目的,在工程上针对性地提出防漏措施,优化水泥浆配方,使浆体具有一定堵漏性能,依据“压稳防漏”平衡固井理念,更改浆柱结构和施工工艺。通过采用新技术措施后,工区内油气井环空水泥浆返高及胶结质量满足后期压裂改造要求。  相似文献   
320.
宋志冬  颜丹平 《现代地质》2019,33(5):937-956
扬子地块Rodinian造山后向伸展作用转化的过程与时间,一直是扬子地块新元古代构造演化的重要科学问题。扬子地块东南瓮安穹隆保存了新元古界板溪群至南华系的完整地层层序与角度不整合接触关系,是回答和理解新元古代造山后构造转化问题的理想区域。对新元古代浅变质板溪群沉积岩和南华纪南沱组沉积层序进行了调查,并采取系列样品进行碎屑锆石U-Pb定年分析和岩石地球化学分析。野外调查表明,南华纪南沱组角度不整合于板溪群之上;年代学分析结果表明,板溪群的沉积时代应在772 Ma之前,而南华纪南沱组沉积时代晚于691 Ma。瓮安穹隆新元古代板溪群沉积岩SiO2含量中等,SiO2/Al2O3平均值为5.53,K2O/Na2O平均值为7.14,TFeO+MgO平均值为3.47%。板溪群物源可能来自上地壳,原岩以长英质物源为主,为活动大陆边缘构造背景,其物源主要来自扬子地块西缘。南沱组沉积岩样品SiO2含量中等,SiO2/Al2O3平均值为4.69,K2O/Na2O平均值为20.41,TFeO+MgO含量平均值为6.64%;碎屑沉积岩稀土元素球粒陨石标准化曲线与上陆壳相似,以轻稀土富集、显著的铕负异常和重稀土平坦为特征。南沱组沉积岩物源可能来自上地壳,原岩以长英质物源为主,有少量中性岩混入,具有裂谷背景特征。综上所述,认为瓮安穹隆板溪群—南沱组地层层序代表了从造山作用向造山后伸展裂谷转化过程,其中板溪群可能与碰撞造山作用对应,主体约在772 Ma结束,而造山后裂谷的形成在691 Ma之后,因此,从造山作用向造山后伸展转化的时间大约为772~691 Ma。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号