首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   13篇
  国内免费   11篇
测绘学   2篇
大气科学   5篇
地球物理   70篇
地质学   47篇
海洋学   70篇
天文学   1篇
综合类   7篇
自然地理   34篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   14篇
  2012年   5篇
  2011年   12篇
  2010年   7篇
  2009年   18篇
  2008年   17篇
  2007年   14篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   8篇
  2001年   11篇
  2000年   16篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
181.
水体是鹊山龙湖景观主体,驳岸是水体周边景观的基础和有机组成部分,如何做到驳岸与景观设计充分融合,体现人与自然、岸与水的和谐性、亲水性及生态性,是驳岸设计的关键。该文对驳岸的一般形式进行了概述,介绍了生态驳岸的概念、分类及常用做法,根据湖区各部位具体情况、景观要求,运用生态驳岸不同类型的特点有针对性地对各不同区域驳岸进行了设计方案的探讨。  相似文献   
182.
This paper presents a conceptual model for the prediction of energy transmission in presence of emergent permeable low crested structures. The transmitted wave is reconstructed from the superposition of perturbations generated leeward the structure by filtration and overtopped volumes. The model requires only structure geometry and incident wave conditions (wave height, period). A fair agreement is obtained by comparing the predicted transmission coefficients and wave spectra with measurements performed in wave flume and wave basin.  相似文献   
183.
三峡库区塌岸的物理模拟研究   总被引:1,自引:0,他引:1  
三峡水库正常蓄水以后,涉水岸坡岩土体内部的地下水动力场和应力场都将发生较大的改变,再加上库水位变动、风浪侵蚀以及暴雨等外部营力作用,岸坡稳定性将发生显著变化,并可能导致塌岸的发生。为了研究三峡水库的塌岸模式和成因机理,本文在查明三峡库区塌岸工程地质条件的基础上,采用物理模拟手段,利用正交设计原理,分析研究了塌岸模式及塌岸宽度与岸坡坡角、水位、降雨强度、土质及波浪等影响因素的关系和敏感程度。  相似文献   
184.
珠江口北岸SX97孔7 ka B.P.以来的矿物分析   总被引:6,自引:0,他引:6  
珠江口北岸SX97孔的矿物分析揭示这一地区自中全新世7kaB.P.以来气候环境演化可以分为5个阶段,第1、和第5阶段对应高海面、气候湿热时期,而第2和第4阶段对应低海面气候相对偏干偏凉的时期。这些与海岸沙丘、海滩岩和海相沉积地层的资料能比较好地对应。矿物之间的相关关系揭示珠江口7kaB.P.以来的物质沉积受到气候环境变化-河口响应系统的控制。第1、第3和第5阶段的高海面湿热时期没积物较细,沉降的各  相似文献   
185.
The distal reach of the Lower Jingjiang River(LJR)in the middle of the Yangtze River consists of five adjacent bends,among which the Qigongling Bend is a U-shaped meander with a mean sinuosity of 2.2 and the narrowest neck 525 m in width.This bend is slowly approaching neck cutoff owing to progressive bank erosion.An abnormal phenomenon has occurred in this bend since the Three Gorges Reservoir(TGR)began to operate in 2003 which is erosion in the inner bank zone and deposition in the outer bank zone.This problem has not been fully understood because of the interplay of changes in water-sediment,bank erosion,and artificial bank revetment.In this study,aerial and remote sensing images,hydrological data,channel topography,and an existing bank erosion model are used to reveal channel morphodynamics of this bend and the trend of the potential neck cutoff induced by bank erosion.The study results show that the clear water released from the TGR has provided by forcefully eroded the point bar of inner bank but failed to scour the outer bank due to the protection of bank revetment since the 1990 s.Thus far,the outer bank zone near the bend apex has increasingly widened in conjunction with the formation of 2 emerging sand bars.Consequently,the thalweg of the main channel has laterally shifted toward the inner bank by roughly 800 m.More severely,the rate of bank retreat on the upstream side of the bend neck was about 4.5 m/yr in 2010-2019,but the downstream side of this neck was experienced slight deposition.Bank erosion could be accelerated by progressively increasing erosion and eventually trigger the occurrence of neck cutoff in the next few decades,thereby significantly altering the quasi-equilibrium regime of channel morphodynamics in the LJR.  相似文献   
186.
Slope–channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pbex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.  相似文献   
187.
Severe bank erosion at lowland rivers in Bangladesh devours vast tract of lands and renders thousands of people homeless at high flood; also,rapid deposition changes bed topographies and seriously redu...  相似文献   
188.
A key parameter used in the assessment of bank filtration is the travel time of the infiltrated river water during the passage through groundwater. We analyze time series of electrical conductivity (EC) in the river and adjacent groundwater observation wells to investigate travel times of young hyporheic groundwater in adjoining channelized and restored sections of River Thur in North-East Switzerland. To quantify mixing ratios and mean residence times we perform cross-correlation analysis and non-parametric deconvolution of the EC time series. Measurements of radon-222 in the groundwater samples validate the calculated residence times. A simple relationship between travel time and distance to the river has not been observed. Therefore, we speculate that the lateral position and depth of the thalweg as well as the type of bank stabilization might control the infiltration processes in losing rivers. Diurnal oscillations of EC observed in the river and in nearby observation wells facilitate analyzing the temporal variation of infiltration. The diurnal oscillations are particularly pronounced in low flow situations, while the overall EC signal is dominated by individual high-flow events. Differences in travel times derived from diurnal and overall EC signals thus reflect different infiltration regimes.  相似文献   
189.
The objective of this work was to evaluate crushed recycled glass as a medium for rapid filtration. In the first part of this work, physical and hydraulic characteristics of the glass medium were studied. In the second part, pilot scale inline filtration experiments were carried out using raw waters from three different water sources. Two physically identical filter columns were operated in parallel in all the experiments. One filter contained a silica sand medium that is widely used in Turkey, whereas the other filter contained crushed recycled glass. Experiments were repeated five times as follows: (i) Without the use of a coagulant, (ii–iii) with 5 mg/L and 10 mg/L of alum, and (iv–v) with 5 mg/L and 10 mg/L of ferric chloride. Turbidity, particle counts, and head losses were measured and compared as functions of time. The following were observed: (1) Provided that a coagulant was used, the filter containing crushed glass produced effluent turbidities and particle counts similar to those obtained with the sand filter. (2) The crushed glass medium generated both a smaller clean‐bed head loss and smaller clogging head losses than those of the sand filter. It is concluded that crushed glass shows significant promise as an alternative to silica sand in rapid filtration.  相似文献   
190.
Carbonate platforms spanning intervals of global change provide an opportunity to identify causal links between the evolution of marine environment and depositional architecture. This study investigates the controls on platform geometry across the Palaeozoic to Mesozoic transition and yields new stratigraphic and palaeoenvironmental constraints on the Great Bank of Guizhou, a latest Permian to earliest Late Triassic isolated carbonate platform in the Nanpanjiang Basin of south China. Reconstruction of platform architecture was achieved by integrating field mapping, petrography, biostratigraphy, satellite imagery analysis and δ13C chemostratigraphy. In contrast to previous interpretations, this study indicates that: (i) the Great Bank of Guizhou transitioned during Early Triassic time from a low-relief bank to a platform with high relief above the basin floor (up to 600 m) and steep slope angles (preserved up to 50°); and (ii) the oldest-known platform-margin reef of the Mesozoic Era grew along steep, prograding clinoforms in an outer-margin to lower-slope environment. Increasing platform relief during Early Triassic time was caused by limited sediment delivery to the basin margin and a high rate of accommodation creation driven by Indosinian convergence. The steep upper Olenekian (upper Lower Triassic) slope is dominated by well-cemented grainstone, suggesting that high carbonate saturation states led to syndepositional or rapid post-depositional sediment stabilization. Latest Spathian reef initiation coincided with global cooling following Early Triassic global warmth. The first Triassic framework-building metazoans on the Great Bank of Guizhou were small calcareous sponges restricted to deeper water settings, but early Mesozoic reef builders were volumetrically dominated by Tubiphytes, a fossil genus of uncertain taxonomic affinity. In aggregate, the stratigraphic architecture of the Great Bank of Guizhou records sedimentary response to long-term environmental and biological recovery from the end-Permian mass extinction, highlighting the close connections among marine chemistry, marine ecosystems and carbonate depositional systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号