首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   7篇
  国内免费   2篇
地球物理   89篇
地质学   5篇
天文学   31篇
自然地理   15篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   43篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   3篇
  2005年   10篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   8篇
  1999年   8篇
  1998年   13篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1982年   1篇
排序方式: 共有140条查询结果,搜索用时 343 毫秒
31.
本文用美国NCAR非相干散射雷达链的观测资料进行了两个事例分析。结果表明,在所选事例的中、弱磁扰期间,高低纬电离层间以动力耦合效应为主,即扰动电离层发电机的特征较明显。由于赤道电离层特性和赤道站雷达观测灵敏度较高,从而也观测到与扰动电场从高纬直接穿透过来相关的电动耦合现象。最后,对有关的物理过程进行了讨论。  相似文献   
32.
We investigate the parameter space of a Parker dynamo with a simple alpha quenching nonlinearity, taking as governing parameters the dynamo number D (D<0) and the ratio of diffusion times in the radial and latitudinal directions in the convective zone. The latter parameter, μ, is connected with the aspect ratio (dimensionless thickness) of the convective zone. We isolate two asymptotic configuration of the dynamo waves excited by the Parker dynamo in the limiting case of strong generation. Apart from the standard case with the solar type dynamo wave travelling from mid-latitudes to the equator, we describe a form of dynamo activity which is basically an anharmonic standing wave. The first situation occurs when μ increases with |D|. With μ fixed and |D| increasing, the second asymptotic configuration occurs. We discuss possibilities of identifying these asymptotic configurations with various types of stellar activity as traced by stellar CaII data.  相似文献   
33.
Abstract

The radial temperature differences at which the transitions from one wave number to the next occur have been measured with either increasing or decreasing positive radial temperature gradients, at five different rotation rates, with the fluid being always in thermal equilibrium and being in contact with an upper rigid lid. Hysteresis has been observed in all wave number transitions, and also in the transition to upper symmetry. There are, nevertheless, regions in the stability diagram where the wave number is unique. There is an excluded region where the wave number four cannot be obtained through quasi-steady procedure. There is a reversal of the sense of the hysteresis of the transitions. At low ΔT, a wave number transition with increasing radial temperature difference occurs at a higher ΔT, than the same transition with decreasing temperature difference. On the other hand, at large values of ΔT, a wave number transition with increasing radial temperature difference occurs at a lower ΔT, than the same transition with decreasing temperature difference. Wave number transitions with increasing ΔT, occur spontaneously out of amplitude oscillations. Wave number transitions with decreasing ΔT, occur via slow wave splitting in association with phase modulations of the waves. The uniqueness of the wave number in the unique areas of the stability diagram has been confirmed by sudden start experiments.  相似文献   
34.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   
35.
The standard dynamo models that explain the origin of the large-scale magnetic fields of celestial bodies are related to the view of turbulent or convective flows as a locally statistically homogeneous and isotropic, but not mirror-symmetric, random field. Using an ABC flow, which is a classical example of a flow with deterministic chaos, we ascertain the extent to which the behavior of the magnetic field in such a flow is similar to the behavior of the magnetic field in mirror-asymmetric turbulence. Such a similarity has been found to be achieved if its coefficients A, B, and C are assumed to be random processes.  相似文献   
36.
Given the complexity involved in a flux-transport-type dynamo driven by both Babcock – Leighton and tachocline α effects, we present here a step-by-step procedure for building a flux-transport dynamo model calibrated to the Sun as a guide for anyone who wishes to build this kind of model. We show that a plausible sequence of steps to reach a converged solution in such a dynamo consists of (i) numerical integration of a classical α – ω dynamo driven by a tachocline α effect, (ii) continued integration with inclusion of meridional circulation to convert the model into a flux-transport dynamo driven by only a tachocline α effect, (iii) final integration with inclusion of a Babcock – Leighton surface α effect, resulting in a flux-transport dynamo that can be calibrated to obtain a close fit of model output with solar observations.  相似文献   
37.
38.
We use the flux-transport dynamo prediction scheme introduced by Dikpati, de Toma, and Gilman (Geophys. Res. Lett. 33, L05102, 2006) to make separate simulations and predictions of sunspot cycle peaks for northern and southern hemispheres. Despite the division of the data, the skill level achieved is only slightly lower than that achieved for the sum of both hemispheres. The model shows skill at simulating and predicting the difference in peaks between North and South, provided that difference is more than a few percent. The simulation and prediction skill is achieved without adjustment to any parameters of the model that were used when peaks for the sum of North and South sunspot areas was simulated. The results are also very insensitive to the averaging length applied to the input data, provided the simulations and predictions are for peaks defined by averaging the observations over at least 13 rotations. However, in its present form, the model is not capable of skillfully simulating or predicting short-time-scale features of individual solar cycles.  相似文献   
39.
Solar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields&amp;#x2019; sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.  相似文献   
40.
This review provides a historical overview of how research in kinematic solar dynamo modeling evolved during the last few decades and assesses the present state of research. The early pioneering papers assumed the dynamo to operate in the convection zone. It was suggested in the 1980s that the dynamo operates in a thin layer at the bottom of the convection zone. Some researchers in recent years are arguing that the poloidal field is produced near the surface&amp;#x2014;an idea that goes back to Babcock (1961) and Leighton (1969).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号