首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   7篇
  国内免费   25篇
地球物理   3篇
地质学   172篇
天文学   4篇
综合类   7篇
自然地理   5篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   35篇
  2012年   5篇
  2011年   3篇
  2010年   10篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
101.
The c. 2·97–2·95 Ga magmatic history ofthe Mallina Basin, in the Pilbara Craton of NW Australia, includeswhat is perhaps the most lithologically diverse magmatism ofany similar-sized Archaean terrain, and is unusual for similar-sizedterrains of any age. The magmatism includes light rare earthelement (LREE)-rich basaltic rocks, LREE-rich gabbros and rockswith boninite-like compositions (collectively the ‘Mallinamafic suite’), and high-Mg diorites (sanukitoids). TheMallina mafic suite is characterized by high primitive mantlenormalized (La/Nb)PM (>3) and (La/Yb)PM (>2), and non-radiogenicNd-isotopic compositions (  相似文献   
102.
Abstract Migmatites in the Quetico Metasedimentary Belt contain two types of leucosome: (1) Layer-parallel leucosomes that grew during deformation and prograde metamorphism. These are enriched in SiO2, Sr, and Eu, but depleted in TiO2, Fe2O3, MgO, Cs, Rb, REE, Sc, Th, Zr, and Hf relative to the Quetico metasediments. (2) Discordant leucosomes that formed after the regional folding events when metamorphic temperatures were at their peak. These are enriched in Rb, Ba, Sr and Eu, but display a wide range of LREE, Th, Zr, and Hf contents relative to the Quetico metasediments.
Layer-parallel leucosomes formed by a subsolidus process termed tectonic segregation. This stress-induced mass transfer process began when the Quetico sediments were deformed during burial, and continued whilst the rocks were both stressed and heterogeneous. Subsolidus leucosome compositions are consistent with the mobilization of quartz and feldspar from the host rocks by pressure solution. The discordant leucosomes formed by partial melting of the Quetico metasediments, possibly during uplift of the belt. The range of composition displayed by the anatectic leucosomes arises from crystal fractionation during leucosome emplacement. Some anatectic leucosomes preserve primary melt compositions and have smooth REE patterns, but those with negative Eu anomalies represent fractionated melts, and others with positive Eu anomalies represent accumulations of feldspar plus trapped melt.  相似文献   
103.
Abstract The stability of quartz-chloritoid-staurolite-almandine-cordierite and aluminium silicates is used to constrain both metamorphic conditions and pressure-temperature trajectories for two localities within the 2700 Ma Archaean Yilgarn Block in Western Australia. Available experimental data are used to calculate thermodynamic data for a self-consistent set of equilibria between these minerals. A lower amphibolite facies locality from the margin of a lower strain area contains assemblages including quartz-chloritoid-staurolite-garnet-biotite with altered cordierite replacing chloritoid, quartz-staurolite-andalusite, and quartz-cordierite-andalusite-biotite. This locality was heated to 530–560°C in the andalusite field, at 4.2 kbar. A sample from a mid- to upper-amphibolite facies, highly strained locality contains relict staurolite enclosed by andalusite, in turn replaced by cordierite and muscovite with biotite and sillimanite in the matrix. The assemblage was heated isobarically from conditions near the maximum experienced by the lower grade locality of 560°C at 4.2 kbar to temperatures in excess of the andalusite-sillimanite transition but within the quartz plus muscovite stability field (600–650°C). The higher grade locality is close to a granitoid dome and sections based on gravity profiles reveal that this locality is underlain by granitoid at shallow depths. The higher grade metamorphism apparently reflects superposition of the thermal aureole on regional metamorphic conditions similar to those in the lower grade areas.  相似文献   
104.
The Bardoc Tectonic Zone (BTZ) of the late Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia, is physically linked along strike to the Boulder-Lefroy Shear Zone (BLSZ), one of the richest orogenic gold shear systems in the world. However, gold production in the BTZ has only been one order of magnitude smaller than that of the BLSZ (∼100 t Au vs >1,500 t Au). The reasons for this difference can be found in the relative timing, distribution and style(s) of deformation that controlled gold deposition in the two shear systems. Deformation within the BTZ was relatively simple and is associated with tight to iso-clinal folding and reverse to transpressive shear zones over a <12-km-wide area of high straining, where lithological contacts have been rotated towards the plane of maximum shortening. These structures control gold mineralisation and also correspond to the second major shortening phase of the province (D2). In contrast, shearing within the BLSZ is concentrated to narrow shear zones (<2 km wide) cutting through rocks at a range of orientations that underwent more complex dip- and strike-slip deformation, possibly developed throughout the different deformation phases recorded in the region (D1–D4). Independent of other physico-chemical factors, these differences provided for effective fluid localisation to host units with greater competency contrasts during a prolonged mineralisation process in the BLSZ as compared to the more simple structural history of the BTZ.  相似文献   
105.
This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km~2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite(s.s.),peridotite(s.l.), as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth's mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust.Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian(Mg# ~ 80), near-anhydrous magma, as olivinedominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting(40%). This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle(SCLM) in this region,which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the large-scale melting event(s), which resulted in the ultra-depleted cratonic keel under the North Atlantic Craton. Hence, a better understanding of such Archaean ultramafic complexes may provide constraints on the geodynamic setting of Earth's first continents and the corresponding SCLM.  相似文献   
106.
内蒙乌拉山—大青山地区太古界混合岩化—重熔作用 ,随地质时代不同发育特征不同。上太古界乌拉山岩群主要发育重熔条带 ,局部出现重熔 ;中太古界集宁岩群有百分之五十发生了重熔 ;下太古界兴和岩群几乎全部被熔融 ,只残留了部分偏基性的难熔组分。现在的兴和岩群只代表兴和期火山—沉积岩石组合的一少部分。  相似文献   
107.
内蒙古中部太古代麻粒岩递增变质成因   总被引:7,自引:4,他引:7  
刘喜山 《岩石学报》1996,12(2):287-298
由早元古代造山运动早期自北西向南东推覆作用引起并使之得以保存的太古代变质作用强度逆转的剖面出露在内蒙古中部的固阳-武川地区。变质镁铁质岩石中矿物组合的变化在低级区为阳起石+绿帘石+绿泥石→普通角闪石+钠长石→普通角闪石+斜长石→石榴石(或透辉石)+普通角闪石+斜长石→无色角闪岩+钠长石;在高级区为普通角闪石+斜长石→紫苏辉石+透辉石+斜长石→石榴石+透辉石(2)+石英。这些变化已被用来恢复太古代时期从低绿片岩相到麻粒岩相的递增变质序列及尔后经历的近等压冷却的退变质作用过程。高级区变质表壳岩与低级区绿岩带的岩石组合、岩石化学、岩石地球化学和变质作用演化序列的对比研究结果表明,两者属于太古代同一火山-沉积单位。其变质程度的不同起因于在经受区域性递增变质作用时,两者处在地壳的不同位置  相似文献   
108.
华北板块北缘东段早前寒武纪稀土元素演化特征   总被引:1,自引:0,他引:1  
通过对区内早太古宙深变质地体、晚太古宙花岗岩-绿岩地体,晚太古-早元古宙优地槽和火山岛弧各类变质岩稀土元素的研究,三个时期的稀土元素具大致相似的演化特征,不同时期相同的岩石类型的稀土配分型式也大致相似,反映了它们有着相同源岩。但是,它们又在稀土丰度、Eu异常和轻、重稀土分离程度方面表现出某些差异,表明本区在早前寒武纪的不同时期、不同构造环境中地壳成分的不均一性。不同岩石类型稀土配分的多样性,说明岩浆源不同,至少有超镁铁质、镁铁质和安山质或英云闪长岩-奥长花岗岩三种岩浆源。  相似文献   
109.
J.B. Smith 《Chemical Geology》2003,194(4):275-295
Four felsic igneous rock suites in the Archaean West Pilbara have been identified based on geochemistry and geochronology. A voluminous TTG suite formed at ca. 3260 Ma, which appears to be from melting of a mafic-subducted oceanic slab and thus represents generation of new continental crust. A tholeiitic to calc-alkaline volcanic assemblage and coeval granitoids formed at ca. 3120 Ma in an extensional environment. Further TTG magmatism occurred at ca. 3000 Ma, generating both large granitoid complexes and small plutons, again adding new continental crust to the West Pilbara. At 2930-Ma crustal reworking, most likely of the 3000-Ma rocks, generated small plutons that are coeval with layered ultramafic-mafic intrusions in the region. The changes from new crustal material to crustal reworking infer changing tectonic regimes, which is important for models of Archaean continental crust generation. The data presented here indicate that crustal generation mechanisms varied and were episodic in the West Pilbara, implying that early crustal evolution was a result of periodic changes in tectonic regime, which is reflected in the geochemistry of the rocks.  相似文献   
110.
NanoSIMS is a relatively new technology that is being applied to ancient carbonaceous structures to gain insight into their biogenicity and syngeneity. NanoSIMS studies of well preserved organic microfossils from the Neoproterozoic (0.8 Ga) Bitter Springs Formation have established elemental distributions in undisputedly biogenic structures. Results demonstrate that sub-micron scale maps of metabolically important elements (carbon [C], nitrogen [measured as CN ion], and sulfur [S]) can be correlated with kerogenous structures identified by optical microscopy. Spatial distributions of C, CN, and S in individual microfossils are nearly identical, and variations in concentrations of these elements parallel one another. In elemental maps, C, CN, and S appear as globules, aligned to form remnant walls or sheaths of fossiliferous structures. The aligned character and parallel variation of C and CN are the strongest indicators of biogenicity.Nitrogen/carbon atomic ratios (N/C) of spheroids, filaments, and remnants of a microbial mat suggest that N/C may reflect original biochemical differences, within samples of the same age and degree of alteration. Silicon (Si) and oxygen (O) maps illustrate that silica is intimately interspersed with organic carbon of the microfossils. This relationship is likely to reflect the process of silica permineralization of biological remains and thus may be an indicator of syngeneity of the fossilized material with the mineral matrix.The NanoSIMS characterization of Bitter Springs microfossils can be used as a baseline for interpreting less well preserved carbonaceous structures that might occur in older or even extraterrestrial materials. An example of such an application is provided by comparison of Bitter Springs results with NanoSIMS of Archaean carbonaceous structures from Western Australia, including a spheroid in the 3 Ga Farrel Quartzite and material in a secondary vein in the 3.43 Ga Strelley Pool Chert. Results reinforce a biogenic, syngenetic interpretation for the Archaean spheroid.NanoSIMS has several advantages in the study of ancient organic materials: the technique allows characterization of extremely small structures that are present in low concentrations; organic matter does not have to be isolated by acid treatment but can be analyzed in polished thin section; preparation is simple; samples are minimally altered during analysis; results provide sub-micron scale spatial distribution coupled with concentration information for at least five elements; the biologically important elements of carbon and nitrogen can be assessed; and the ability to study organic remains in situ permits petrographic assessment of spatial relationships between organic matter and mineral constituents. These advantages could be of significant benefit for interpretation of poorly preserved and fragmentary carbonaceous remains that might occur in some of Earth's oldest samples as well as in meteorites or extraterrestrial material brought to Earth in future planetary missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号