首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   258篇
  国内免费   211篇
测绘学   5篇
大气科学   2篇
地球物理   549篇
地质学   566篇
海洋学   39篇
天文学   23篇
综合类   21篇
自然地理   412篇
  2023年   13篇
  2022年   18篇
  2021年   36篇
  2020年   46篇
  2019年   48篇
  2018年   47篇
  2017年   29篇
  2016年   54篇
  2015年   40篇
  2014年   59篇
  2013年   54篇
  2012年   46篇
  2011年   52篇
  2010年   47篇
  2009年   53篇
  2008年   88篇
  2007年   89篇
  2006年   98篇
  2005年   83篇
  2004年   83篇
  2003年   58篇
  2002年   50篇
  2001年   39篇
  2000年   49篇
  1999年   37篇
  1998年   36篇
  1997年   32篇
  1996年   39篇
  1995年   27篇
  1994年   37篇
  1993年   20篇
  1992年   23篇
  1991年   28篇
  1990年   19篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   2篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有1617条查询结果,搜索用时 46 毫秒
941.
In the past, domestic and abroad scientific workers have done a large number of experiment researches on a great number of researches of experiment for the relationship between electrical resistivity change and the load stress on rock (Geoelectric Testing Group, Department of Geophysics, Peking University and Research Division, Seismological Brigade of Lanzhou, 1978; Zhang, 1981; Chen, et al, 1983; Zhao, et al, 1983; Zhang, Lu, 1983; Zhang, et al, 1985; Brace, Orange, 1968; Kurite, 1986; Teisseyre, 1989), such as imitating dynamic fracture of rock, frictional sliding course, and observing its resistivity change shape with a lot of experimental workssuch as simulating the dynamic course of crustal rocks fracturing and frictional slipping along the fracture surface, and observing its resistivity change shape with experiment. They found that, in the fracture process of rock under loading, not only its resistivity shape change notably, and its direction changes also very clearly, and therefore many scientific workers have shown strong interest in anisotropy of resistivity change, and have done some researches onfor it.  相似文献   
942.
Intr0ducti0nTheproblemsaboutcrustalrocksfracturingandfricti0nalslippingalongthefracturesurfaCearecloselyrelatedtotheresearchesofearthquakemechanismandgeol0gichazards,andalsoareoneofthosebeinggivenmoreconcernbyscientistsinearthscience-Discussingab0utthegenera-tionanddevelopmentprocess0fintraPlateearthquakes,Wang,etal(l999)proPOsedthatearth-quake'spregnant,mechanicspropertyandgeometricstructureofmatterinearthquake'sgestatingareaaredifferinthousandswaysf0rdifferentplaceinsideslab-Thus,thepregna…  相似文献   
943.
大理岩的波速各向异性测量   总被引:4,自引:0,他引:4  
利用 GC- 1 0 0型工程多波参数分析仪 ,对山东莱州大理岩进行了波速各向异性的实验室观测。实验采用两组岩样 ,一组为带有先天的优势定向排列裂缝的岩样 ,另一组为带有优势层理走向的完整岩石。在未加载的状态下 ,发现两组岩样都有明显的波速方位各向异性。对于带有先天的优势定向排列裂缝的岩样 ,甚至可以在无加载状态下观测到剪切波的分裂现象  相似文献   
944.
The anisotropy of magnetic susceptibility was measured on 42 gabbros sampled across a complete plutonic sequence from the Oman ophiolite. The rock fabrics, investigated in the field and through plagioclase crystallographic fabric measurements, were compared to the magnetic fabrics. This comparative study reveals that from the paleo-Moho to the top of the foliated gabbros level, 73% of the rocks display a good correspondence in orientation, between the magnetic and rock fabric orientation. In these rocks, the AMS is controlled by secondary magnetites located in the fracture network of the olivines, and probably, but to a lesser extent, by secondary magnetites located in the exsolution lamellae of the clinopyroxenes. The high correlation between the AMS ellipsoid orientation and the rock fabric orientation is explained by the fact that the magnetic foliation is essentially constrained by the orientation of the olivine fracture planes, which is in turn constrained by the orientation of the overall magmatic rock fabric. In contrast to the primary mineral phases, the orientation of magnetite crystals in these gabbros is not due to their alignment in a flowing magma, so their preferred orientation, although usually mimicking that of the rock fabric, does have not the same origin. Furthermore, given that the preferred orientation of the anisometric secondary magnetites is much less perfect than the preferred orientation of the plagioclases, no correlation between the shape and magnitude of the AMS and plagioclase fabrics can be established. In the uppermost levels of the sequence there is no correspondence between the magnetic and rock fabric orientation. The magnetism of these rocks is mainly carried by primary magnetite and ilmenite grains. These minerals occur as small and scattered interstitial grains that exhibit neither alignment nor parallelism with the pre-existing rock fabric. Hence, the anisotropy, shape and orientation of the AMS ellipsoid are independent of the rock fabric ellipsoid. Although in the Wadi Al Abyad gabbros, just like in other magnetite bearing rocks (Rochette et al., 1992; Archanjo et al., 1995), the AMS cannot be used to evaluate the shape and strength of the finite strain ellipsoid, it can be reliably used to get the orientation of the rock fabric ellipsoid when the AMS is controlled by secondary magnetites.  相似文献   
945.
选取陆相湖盆泥河湾盆地的郝家台和东谷坨两剖面,共取样286块,研究喾物磁组构参数特征及其环境意义。结果表明,沉积物磁组构参数的变化与沉积物粒度参数、磁化率的变化密切相关,蕴含着环境变化的信息。磁化率各向异性度(P)、磁线理(L)、沉积物磁化率的高值和细粒物质含量的低值指示湖水平面下降,气候较为干燥;相反,则说明湖水平面上升,气候较为湿润。据此,将泥河湾盆地沉积过程中湖水平面的变化过程划分为2个大的  相似文献   
946.
The results of the study of optical properties of 13 anthracites from different parts of the world are presented in this paper. Measurements of reflectance values were made on non-oriented vitrinite grains for a minimum of 300 points per sample. The reconstruction of Reflectance Indicating Surfaces (RIS) were made by Kilby's method [Kilby, W.E., 1988. Recognition of vitrinite with non-uniaxial negative reflectance characteristics. Int. J. Coal Geol. 9, 267–285; Kilby, W.E., 1991. Vitrinite reflectance measurement — some technique enhancements and relationships. Int. J. Coal Geol. 19, 201–218]. It was found that the use of Kilby's method for strongly anisotropic materials like anthracites did not give unambiguous results. Some improvement in Kilby's method, consisting of the division of the cumulative cross-plot into several elemental components, is suggested. Each elemental cross-plot corresponds to a textural class of anthracite, which is characterized by the values of RIS main axes RMAX(k), RINT(k) and RMIN(k) (k=1,2,…n; n — number of classes). The global texture of anthracite is characterized as a RIS with main axes calculated as the weighted means of , and for each class of this anthracite.The division of cumulative Kilby's cross-plot on elemental components makes possible the calculation of new coefficients Ht and H10 characterizing the heterogeneity of the structure and texture of anthracites. The results of our study show that all anthracites have biaxial negative textures, but their heterogeneity varies in a wide range of Ht and H10 coefficients depending upon the individual coal basin.  相似文献   
947.
采用河南小浪底水库数字地震台网2009—2016年的地震观测资料,结合双差重定位结果,利用剪切波分裂系统分析方法,获得了小浪底水库库区8个数字地震台站的剪切波分裂参数.研究表明,小浪底库区地震主要分布在库区中段的石井河断层附近,呈团状散布;该区域的剪切波快波平均偏振方向为100.4°±45.0°,慢波平均时间延迟为(2...  相似文献   
948.
利用2011~2013年在川滇地区布设的190台宽频带流动地震台站,采用背景噪声程函层析成像方法和远震面波亥姆霍兹方程层析成像方法对川滇地区的地壳上地幔各向异性结构进行研究,得到高分辨率下的6~60 s瑞利面波相速度和方位各向异性结构。结果表明:1)川滇地区上地壳各向异性方向与地表构造走向一致,反映出川滇块体向东南向挤出的构造运动特征;2)川滇地区中下地壳存在较强的方位各向异性相速度低速异常,符合中下地壳流模型;3)以26°N为界,川滇地区南部地壳与上地幔的各向异性方向不一致,表明其下方可能存在壳幔解耦变形;4)川滇地区南部长周期瑞利面波的方位各向异性特征与剪切波分裂方向一致,均为近EW向,推测可能为印度板块东向俯冲回撤引起的东西向地幔流。  相似文献   
949.
波在介质中传播,主要是受介质的弹性性质的影响,在各向同性的岩石背景上,含有裂隙;岩石表现为各向异性,裂隙的形状不同,各向异性的性质也不同。本文在Hudson模型基础上,应用散射理论,研究了垂直定向分布的裂隙介质(EDA),水平分布的裂隙介质(PTL)、正交裂隙介质(ORA)、两组垂直斜交的裂隙介质(EDA+EDA)等4种类型裂隙介质的弹性性质,给出弹性参数计算公式,并分析了裂隙介质与各向异性之间的内在联系。  相似文献   
950.
The oxide mineralogy and rock magnetic properties of unmineralised banded iron‐formations in selected portions of four drillholes in the Hamersley Basin, Western Australia are reviewed. In all four drillholes, petrographic studies indicate that primary euhedral to subhedral hematite is partially replaced by magnetite as a result of subsolidus reduction. All drillholes show partial recrystallisation of the secondary magnetite, suggesting that early subsolidus reduction was probably a regional event occurring during prograde metamorphism. Incomplete replacement of primary hematite by magnetite within and between sedimentary band structures indicates that equilibration in the magnetite stability field was not reached even at the mesoband scale. Subsequent subsolidus oxidation of magnetite and the formation of a second‐generation hematite are documented in only two of the drillholes. Goethite‐filled veins and thick selvages of goethite around some veins reflect movement of circulating oxidising fluids. The absence of goethite and second‐generation hematite in two of the drillholes indicates that subsolidus oxidation is not a regional event, but very much localised. Rapid changes in down‐hole susceptibility measurements correlate directly with detailed petrographic results as susceptibility readings change with the hematite/magnetite ratio on a mesoband scale. Acquisition of the main remanence correlates with the formation of hematite as the primary oxide phase followed by partial replacement by magnetite as a result of subsolidus reduction, supporting regional models requiring pre‐folding remanence. The strong orientation of the primary hematite parent parallel to band structures in the banded iron‐formations has influenced the direction of crystallisation remanent magnetisation during subsolidus reduction to the magnetite daughter. The strong planar alignment has also produced a planar magnetic fabric and marked anisotropy of magnetic susceptibility. A natural remanent magnetisation overprint and reduction in anisotropy of magnetic susceptibility are only recorded in samples that have undergone subsolidus oxidation and the recognition of localised post‐metamorphic oxidation overprinting can also explain ore deposit models requiring post‐folding remanence. The relative timing of and between oxidising fluid events is not known, but both petrographic and rock magnetic evidence to date suggests that there was at least one and probably two post‐folding oxidising events in the area of study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号