We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation.The data we use are from the China National Seismic Network,global and regional networks and PASSCAL stations in the region.We first acquire cross-correlation seismograms between all possible station pairs.We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s.After that,Rayleigh wave group and phase velocity dispersion maps on 1° by 1° spatial grids are obtained at different periods.Finally,we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node.The inversion results show large-scale structures that correlate well with surface geology.Near the surface,velocities in major basins are anomalously slow,consistent with the thick sediments.East-west contrasts are striking in Moho depth.There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar,Tarim,Ordos,and Sichuan).These strong blocks,therefore,appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape.In northwest TP in Qiangtang,slow anomalies extend from the crust to the mantle lithosphere.Meanwhile,widespread,a prominent low-velocity zone is observed in the middle crust beneath most of the central,eastern and southeastern Tibetan plateau,consistent with a weak (and perhaps mobile) middle crust. 相似文献
In order to build a rapid ocean ambient noise model adapted for a stratified shallow water, a hybrid model of normal mode method (for far field) and ray method (for near field) is suggested which combines the advantages of both methods. Since the near field of wind-generated noise is not sensitive to the sound speed profile, the sound speed profile is regarded as a constant; which makes the model rapid and accurate. The simulation results are in agreement with those of the wave model. 相似文献