首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   17篇
  国内免费   20篇
大气科学   8篇
地球物理   37篇
地质学   96篇
海洋学   22篇
综合类   2篇
自然地理   18篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   9篇
  2013年   2篇
  2012年   5篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   12篇
  2007年   2篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   10篇
  2001年   7篇
  2000年   12篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
131.
硫酸盐热还原(TSR)是高含硫天然气形成的主要原因,但是参与TSR反应的主要烃类组分仍存在争议。在对比分析湿气—硫酸镁反应体系、甲烷—硫酸钙反应体系以及重烃—硫酸镁反应体系模拟实验的基础上,通过对TSR化学反应表达式的分析以及化学动力学、热力学等理论的探讨,结合实际地质资料,认为甲烷是C2+烃类参与TSR反应的产物,TSR的发生与C2+气态烷烃的产生具有同步性,TSR的反应速率随着C2+气态烷烃的增加而加快,当湿气裂解为干气后,硫化氢含量几乎不再增加,从而形成干气伴生硫化氢。根据油气生成演化阶段分析,认为TSR主要发生在热裂解生凝析气阶段,原油裂解为硫化氢伴生天然气后,压力系统发生改变,天然气重新聚集成藏,如果构造环境发生改变就会进一步调整成藏。因此,天然气中硫化氢含量不仅受生成条件控制,还受运移通道、保存条件等因素控制。  相似文献   
132.
The nucleation and propagation of polygonal cracks in hydrous sulphate dunes at White Sands National Monument, New Mexico, are affected by water availability, transport through the sand and exchange with the atmosphere. These gypsum sands are cohesive enough to crack due to capillary forces and gypsum cements formed during evaporation. Surface cracks form five‐sided polygons with a variety of triple‐junction angles. Cracks extend down to variable depths and polygons increase in size with depth, showing a maturation similar to experimentally produced polygonal columns in drying corn starch. Results from two years of monitoring crack geometries, temperature and humidity demonstrate that cracks form when water is lost to the atmosphere through the transport of water vapour. Subsurface relative humidity below 5 to 10 cm is almost always maintained at 100% by the evaporation and condensation of water in thin films on grains. The amplitude of daily temperature and thus absolute humidity changes decreases with depth, consistent with lower evaporation and condensation rates with increasing depth. Changes in absolute humidity and the contrast between humidity in pore spaces versus the overlying atmosphere result in significant water loss from the dunes except during times of precipitation and frost/dew condensation. This water loss allows cracks to nucleate and propagate into the dunes. This study hypothesizes that crack tips propagate into sand to the depth at which thin films of water on grains are drying, and that this depth varies from the surface of the dune during precipitation events to depths greater than 45 cm when dunes are drier.  相似文献   
133.
The early diagenetic chemical dissolution of skeletal carbonates has previously been documented as taking place within bioturbated, shallow water, tropical carbonate sediments. The diagenetic reactions operating within carbonate sediments that fall under the influence of iron‐rich (terrigenous) sediment input are less clearly understood. Such inputs should modify carbonate diagenetic reactions both by minimizing bacterial sulphate reduction in favour of bacterial iron reduction, and by the reaction of any pore‐water sulphide with iron oxides, thereby minimizing sulphide oxidation and associated acidity. To test this hypothesis sediment cores were taken from sites within Discovery Bay (north Jamaica), which exhibit varying levels of Fe‐rich bauxite sediment contamination. At non‐impacted sites sediments are dominated by CaCO3 (up to 99% by weight). Pore waters from the upper few centimetres of cores show evidence for active sulphate reduction (reduced SO4/Cl? ratios) and minor CaCO3 dissolution (increased Ca2+/Cl? ratios). Petrographic observations of carbonate grains (specifically Halimeda and Amphiroa) show clear morphological evidence for dissolution throughout the sediment column. In contrast, at bauxite‐impacted sites, the sediment is composed of up to 15% non‐carbonate and contains up to 6000 μg g?1 Fe. Pore waters show no evidence for sulphate reduction, but marked levels of Fe(II), suggesting that bacterial Fe(III) reduction is active. Carbonate grains show little evidence for dissolution, often exhibiting pristine surface morphologies. Samples from the deeper sections of these cores, which pre‐date bauxite influence, commonly exhibit morphological evidence for dissolution implying that this was a significant process prior to bauxite input. Previous studies have suggested that dissolution, driven by sulphate reduction and sulphide oxidation, can account for the loss of as much as 50% of primary carbonate production in localized platform environments. The finding that chemical dissolution is minor in a terrigenous‐impacted carbonate environment, therefore, has significant implications for carbonate budgets and cycling, and the preservation of carbonate grains in such sediment systems.  相似文献   
134.
Ecotoxicological studies, using the tropical marine diatom, Nitzschia closterium (72-h growth rate), were undertaken to assess potential issues relating to the discharge from an alumina refinery in northern Australia. The studies assessed: (i) the species’ upper thermal tolerance; (ii) the effects of three signature metals, aluminium (Al), vanadium (V) and gallium (Ga) (at 32 °C); and (iii) the effects of wastewater (at 27 and 32 °C). The critical thermal maximum and median inhibition temperature for N. closterium were 32.7 °C and 33.1 °C, respectively. Single metal toxicity tests found that N. closterium was more sensitive to Al compared to Ga and V, with IC50s (95% confidence limits) of 190 (140-280), 19,640 (11,600-25,200) and 42,000 (32,770-56,000) μg L−1, respectively. The undiluted wastewater samples were of low toxicity to N. closterium (IC50s > 100% wastewater). Environmental chemistry data suggested that the key metals and discharge are a very low risk to this species.  相似文献   
135.
Precise dating and correlation of past key volcanic eruptions over a wide geographic area in archives of past climate variability is necessary to support a direct causality between volcanism and climate changes. Research has mostly focused on ice cores and varved sediments, which capture a record of volcanic eruptions in geochemistry and the presence of tephra and criptotephra. Precisely dated cave carbonate deposits, collectively known as speleothems are other valuable palaeoclimate archives, and encode information on past volcanism in their sulphate concentration variability. Due to the physical characteristic of speleothems, detection of sulphate concentration variability requires techniques capable of high spatial resolution, very low limit of detection (ppm to ppb) and low background noise. Synchrotron radiation-based (SR) micro X-ray fluorescence (µXRF) and X-ray absorption near-edge spectrometry prove to be one of the most effective techniques to detect short-lived pulses of sulphate concentration increase, which may be interpreted as being related to atmospheric load due to volcanic eruptions. Here, we provide an overview of existing work as well as a novel interpretation of a SR µXRF-based sulphate series in an annually laminated stalagmite with robust chronology. Sulphate concentration peaks in the years 1815–1816, 1844 and 1947, possibly coinciding with Tambora, Krakatau, and Hekla eruptions. It is concluded that sulphate concentration in speleothems expand the potential to correlate volcanic eruption events at a global scale.  相似文献   
136.
Historic, sulphur-rich volcanic eruptions have altered global climate for as much as five years, and much larger events are known from the geologic record. At Scotts Bluff, Nebraska, Early Oligocene strata of the lower Arikaree Group contain a tephra bed with abundant calcite pseudomorphs after gypsum. Previous work has shown sulphate from the pseudomorphs in this tephra bears a high 17O anomaly indicative of oxidation of sulphur gases by ozone or hydrogen peroxide in the atmosphere. Possible sources of the tephra were caldera eruptions at about 28 Ma in the San Juan volcanic field of south-western Colorado (∼500 km SW of the study site) and the eastern Great Basin (∼1000 km WSW). The present sedimentological study shows that tephra and volcanogenic sulphate were deposited and preserved within a small, surface-discharging playa that developed on the irregular upper surface of aeolian siltstones of the subjacent White River Group. Sulphate solutions (including perhaps sulphuric acid) percolated downward within the vadose zone, dissolving early formed smectite cement within underlying volcaniclastic sandstones, reddening these rocks along an irregular alteration front. Preserved fine-scale stratification within the sandstones precludes the possibility that reddening took place during pedogenesis. Displacive growth of gypsum at the playa centre folded tephra beds and forced tephra into underlying sandstones, forming elongate cones. The large mass fraction of gypsum (now replaced by calcite) in the playa sediments suggests a huge, long-distance delivery of sulphate aerosols. Some of the sulphate and tephra may have come from the same eruption, or the fine-grained tephra may simply have aided preservation of dry-fog sulphate derived from an unrelated, effusive eruption of lava.  相似文献   
137.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
138.
通过对新疆兵团垦区硫酸盐渍土路基的野外试槽试验测得的地温、盐冻胀变形量等试验数据进行整理,并运用SPSS软件进行多元线性回归分析,探讨了硫酸盐渍土路基的盐冻胀变形规律、盐冻胀变形量的影响因素及其计算方法,研究结果表明:①在一个冻融循环周期内,路基中各测点的地温-变形量曲线可以分成3个阶段,不同阶段的盐冻胀变化规律不同;②在降温、升温过程中,硫酸盐渍土路基盐冻胀变形量的影响因素不同,相应的计算公式也不同;③在一个冻融循环周期内,路基中各测点的盐冻胀变形量的最大值均出现在升温初期,因此,建议采用升温过程中盐冻胀变形量的计算公式计算路基的最大盐冻胀变形量。  相似文献   
139.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   
140.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号