首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  国内免费   15篇
地球物理   13篇
地质学   48篇
海洋学   1篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2019年   3篇
  2015年   2篇
  2013年   5篇
  2012年   1篇
  2009年   3篇
  2008年   11篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1987年   1篇
排序方式: 共有67条查询结果,搜索用时 66 毫秒
51.
The alkalic porphyry gold–copper deposits of the Cadia district occur in the eastern Lachlan Fold Belt of New South Wales, Australia. The district comprises four porphyry deposits (Ridgeway, Cadia Quarry, Cadia Hill, and Cadia East) and two iron–copper–gold skarn deposits (Big Cadia and Little Cadia). Almost 1,000 tonnes of contained gold and more than four million tonnes of copper have been discovered in these systems, making Cadia the world’s largest known alkalic porphyry district, in terms of contained gold. Porphyry gold–copper ore at Cadia is associated with quartz monzonite intrusive complexes, and is hosted by central stockwork and sheeted quartz–sulfide–(carbonate) vein systems. The Cadia porphyry deposits are characterized by cores of potassic and/or calc–potassic alteration assemblages, and peripheral halos of propylitic alteration, with late-stage phyllic alteration mostly restricted to fault zones. Hematite dusting is an important component of the propylitic alteration assemblage, and has produced a distinctive reddening of feldspar minerals in the volcanic wall rocks around the mineralized centers. Sulfide mineralization is strongly zoned at Ridgeway and Cadia East, with bornite-rich cores surrounded by chalcopyrite-rich halos and peripheral zones of pyrite mineralization. The Cadia Hill and Cadia Quarry deposits have chalcopyrite-rich cores and pyrite-rich halos, and Cadia Hill contains a high-level bornite-rich zone. Distinctive sulfur isotopic zonation patterns have been identified at Ridgeway, Cadia Hill, and Cadia East. The deposit cores are characterized by low δ34Ssulfide values (−10 to −4‰), consistent with sulfide precipitation from an oxidized (sulfate-predominant) magmatic fluid at 450 to 400°C. Pyrite grains that occur in the propylitic alteration halos typically have δ34Ssulfide values near 0‰. There is a gradual increase in δ34Ssulfide values outwards from the deposit cores through the propylitic halos. Water–rock interaction during propylitic alteration caused magmatic sulfate reduction and concomitant oxidation of ferrous iron-bearing minerals, resulting in enrichment of 34S in pyrite and also producing the distinctive reddened, hematite-rich alteration halos to the Cadia deposits. These results show that sulfur isotope analyses have potential applications in the exploration of alkalic porphyry-style deposits, with zones of depleted δ34Ssulfide values most prospective for high-grade mineralization.  相似文献   
52.
滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶普遍出现正环带结构、反环带结构或韵律环带结构,少量为具绿色核部的单斜辉石(“绿核辉石”)。反环带斑晶和“绿核辉石”的幔部与正环带斑晶的核部具有相似并且相对较窄的成分范围,相对高Mg#(0.83 ~ 0.90),低TiO2(0.13 % ~ 0.29 %),Al2O3(0.73 % ~ 1.68 %)和Na2O (0.22 % ~ 0.42 %),为钾质岩浆平衡结晶的产物。反环带斑晶的核部相对低Mg#(0.77 ~ 0.84),但与反环带斑晶的幔部、正环带斑晶的核部均具有相似的Ti/Al比值(0.06 ~ 0.16);韵律环带结构斑晶的成分变化均在正、反环带斑晶的成分范围之内。莴中高镁富钾火山岩中的这些环带结构单斜辉石斑晶应来源于相似的岩浆体系,反 环带结构表明在岩浆房存在较原始岩浆对较演化岩浆再补给的岩浆混合过程,而韵律环带结构特征揭示曾多次发生这种岩浆混合过程。“绿核辉石”的核部明显低Mg# (0.50 ~ 0.74),相对富Al2O3(1.66 % ~ 3.63 %)和Na2O(0.87 % ~ 2.17 %),具有明显较低的Ti/Al比值(< 0.05)和较高的AlVI/AlIV比值(0.38 ~ 0.76),为下地壳捕虏晶 来源,证实了在滇西晚始新世富钾岩浆演化过程中存在少量地壳混染作用。  相似文献   
53.
Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania   总被引:1,自引:0,他引:1  
Jurgis Klaudius  Jrg Keller 《Lithos》2006,91(1-4):173-190
A detailed study of Oldoinyo Lengai has led to the recognition of two major cone-building stages. An early, predominantly phonolitic stage, Lengai I, forms the southern cone. The recent nephelinitic Lengai II developed following a major sector collapse event over Lengai I. Petrography of Lengai II lavas show that nephelinite is combeite- and wollastonite-bearing. All Oldoinyo Lengai lavas are peralkaline and highly evolved in terms of low Mg#, Ni and Cr values. Within the unique Lengai II combeite–wollastonite–nephelinite (CWN) peralkalinity increases with time to extreme values (Na + K)/Al = 2.36. Mineralogical expression of peralkalinity is the presence of combeite and Na-rich clinopyroxene. In addition, exceptionally high Fe2O3 (up to 10.28 wt.%) in nepheline is an indicator for alumina deficiency. Combeite also shows high Fe3+. Phonolite and CWN of Lengai I and Lengai II show similarly enriched LILE and LREE values and generally parallel patterns in PM normalized and REE plots.  相似文献   
54.
Mafic alkalic volcanism was widespread in the Carpathian–Pannonian region (CPR) between 11 and 0.2 Ma. It followed the Miocene continental collision of the Alcapa and Tisia blocks with the European plate, as subduction-related calc-alkaline magmatism was waning. Several groups of mafic alkalic rocks from different regions within the CPR have been distinguished on the basis of ages and/or trace-element compositions. Their trace element and Sr–Nd–Pb isotope systematics are consistent with derivation from complex mantle-source regions, which included both depleted asthenosphere and metasomatized lithosphere. The mixing of DMM-HIMU-EMII mantle components within asthenosphere-derived magmas indicates variable contamination of the shallow asthenosphere and/or thermal boundary layer of the lithosphere by a HIMU-like component prior to and following the introduction of subduction components.Various mantle sources have been identified: Lower lithospheric mantle modified by several ancient asthenospheric enrichments (source A); Young asthenospheric plumes with OIB-like trace element signatures that are either isotopically enriched (source B) or variably depleted (source C); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII-EMI components and slightly influenced by Miocene subduction-related enrichment (source D); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII components and significantly influenced by Miocene subduction-related enrichment (source E). Melt generation was initiated either by: (i) finger-like young asthenospheric plumes rising to and heating up the base of the lithosphere (below the Alcapa block), or (ii) decompressional melting of old asthenosphere upwelling to replace any lower lithosphere or heating and melting former subducted slabs (the Tisia block).  相似文献   
55.
桐庐I型和相山S型两类碎斑熔岩对比   总被引:19,自引:6,他引:19  
以浙西桐庐I型和赣东北相山S型碎斑熔岩为代表,对两类不同成因的火山-侵入杂岩进行了系统对比。桐庐I型具有相对贫SiO_2(<68%)、相对富Na_2O、贫K_2O(Na_2O/K_2O>0.78)、低的Rb/Sr(<0.9)和I_(Sr)(t)值(0.7060)以及高的ε_(Nd)(t)(>-6.0)等特征,表明源区为基性变质火成岩;相山S型含岩浆结晶的富铝矿物石榴石和红柱石,具有相对富SiO_2(2>68%)、低的Na_2O/K_2O(<0.78)、高的Rb/Sr(>0.9)和I_(Sr)(t)值(>0.7100)以及低的ε_(Nd)(t)值(<-6.0)等特怔,其源区为变质沉积岩。  相似文献   
56.
杨宗良 《云南地质》2004,23(3):343-350
民乐铜矿产于中三叠统钙碱性、碱性系列火山碎屑岩、熔岩、次火山岩(英安斑岩)中。矿床形成与陆相火山活动及其后的火山热液、英安斑岩体侵入有关,明显受火山岩岩性、岩相、层位及构造控制。成因上与火山喷发、英安斑岩体侵入作用有关,具有斑岩铜矿的一些特征。矿床受后期火山热液,次生富集叠加改造明显。  相似文献   
57.
O, Hf and Os isotope data are presented for lavas from the highly depleted Tonga–Kermadec arc. O isotope values overlap with those of MORB limiting the amount of interaction with the arc crust. δ18O does not increase northwards as would be expected from the ~ 4 fold increase in subduction rate if slab-derived fluids had high 18O/16O ratios. Thus, the overall northward decrease in HFSE concentrations likely reflects depletion due to prior melt extraction, not increasing extents of melting. Hf isotopes are strongly negatively correlated with Be isotopes consistent with mixing of subducted pelagic sediment into the mantle wedge and do not require Hf to be fluid mobile. With the exception of a boninite from the north Tongan trench, the northern Tonga lavas do not overlap the Hf isotope composition of either the Samoan plume or the subducting Louisville volcaniclastic sediments. Thus, the Pb isotope signatures in these lavas must have been added by fluids and sediment melts derived from the Louisville volcaniclastics with minimal mobilisation of Hf. This suggests conservative behaviour for this element due to the formation of residual zircon during partial melting of the subducted sediments. 187Os/188Os ranges from 0.1275 to 0.4731 and the higher Os isotope ratios reflect the sensitivity of this system to even minor interaction with altered arc crust. Conversely, the lowest Os ratios are subchondritic and indicate that transfer of radiogenic Os from the slab is not all pervasive and provide an important constraint on the composition of the mantle wedge. Remarkably, the least radiogenic sample is a dacite demonstrating that evolved magmas can develop by fractionation from mantle-derived magmas with minimal interaction with the arc crust.  相似文献   
58.
作为拉萨地块南部形成时代最早的火山岩,叶巴组火山岩对于确定新特提斯洋的俯冲过程及印度欧亚大陆碰撞前的演化等具有重要意义。前人的研究结果显示,叶巴组火山岩是一套岩性由基性到酸性连续的、具有岛弧地球化学特征的火山岩。目前在叶巴组火山岩中只有酸性岩获得了精确的锆石U-Pb年龄,显示其形成时代为早侏罗世。然而对叶巴组中基性火山岩目前尚无精确的年代学报道。另外,有关叶巴组火山岩形成的动力学背景,目前还存在争议。对拉萨地块南部得明顶地区的叶巴组火山岩进行了锆石U-Pb年龄和地球化学研究,获得其锆石U-Pb年龄为188.8±1.8Ma,表明与酸性火山岩形成时代一致。得明顶地区叶巴组火山岩地球化学数据显示其具有类似于岛弧火山岩的特征,富集大离子亲石元素、亏损高场强元素、轻重稀土元素分异明显,部分样品具有Sr及Eu(δEu=0.75~0.83)的略微异常。结合前人的研究成果认为,叶巴组火山岩很可能形成于大陆边缘弧,其形成与新特提斯洋的北向俯冲有紧密的联系。  相似文献   
59.
Shallow marine sediments of the Broughton Formation are dominated by immature volcanic debris of intermediate to basic composition, generated in an adjacent subaerial environment by volcanism responsible for the nine shoshonite units intercalated within sediments of the Kiama region. Sediment was supplied to the offshore environment via periodic storm‐generated, expanded high density turbidity currents. Initial deposition, represented by the Westley Park Sandstone Member, was below storm wave base, during which time the depositional surface was subjected to post‐depositional tractional reworking by northerly directed, tidally influenced bottom currents. The resulting positive‐relief sand bodies on the seafloor contain tractional sedimentary structures (the ‘tractional facies association'). Areas of the substrate between these sand bodies retained their turbidite bedding structure (the ‘rhythmically bedded facies association') but were extensively bioturbated by a diverse deposit‐feeding biomass.

Upon emplacement of the lowest of the nine shoshonite units as a tri‐composite, locally intrusive lava flow, the depositional surface was elevated, transgressing storm wave base. The body of the shoshonite flow also shielded the substrate from the northerly directed tractional currents, allowing the development and preservation of the hummocky cross‐stratified sandstone facies in the Kiama Sandstone Member. Following burial of the shoshonite flow by continued deposition, this local shielding effect was overcome and tractional currents again reworked the entire depositional surface.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号