首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   12篇
  国内免费   20篇
测绘学   4篇
大气科学   1篇
地球物理   30篇
地质学   15篇
海洋学   95篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   13篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
51.
ADCP application for long-term monitoring of coastal water   总被引:3,自引:1,他引:2  
Three kind of application of ADCP is reported for long-term monitoring in coastal sea. (1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists ofplankrton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5~7d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination ofupwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.  相似文献   
52.
A new method is proposed to convert pressure measured by an instrument to water depth using an additional available bottom-moored pressure sensor. A perturbation analysis is used in this analysis, which leads to a simple formula for calculating water depth (defined as one from the mean sea surface to the instrument) from the pressure data. In field experiments, this method is easier to apply than existing methods. Based on the theoretical derivation, the error associated with the method comes from two sources when the instrument depth is known at the beginning of the measurement: temporal variation of deep water density at depths deeper than the instrument and variation in the gravitational acceleration with instrument displacement. These two sources contribute up to 4% of the error relative to the vertical displacement of the instrument, assuming the pressure sensor is accurate. With the vertical displacement of the instrument being on the order of 10?m, the absolute error is on the order of 0.4?m, which is expected and acceptable in oceanic measurements. The method is applied to data from a field experiment that took place along the Myanmar coast in December 2012.  相似文献   
53.
An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s−1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s−1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the ‘Northern Current’.  相似文献   
54.
根据3种经典垂线流速分布模型,推导出适合ADCP盲区流速计算的局部模型,并基于模型内符合精度及其与实际观测垂线流速的相关系数,提出了根据不同时态和流态自适应确定盲区流速模型的思想和方法。实验验证了所推导的盲区流速计算模型的正确性,以及盲区流速最优推算模型自适应确定思想和方法的有效性和可靠性。  相似文献   
55.
基于座底ADCP实测回波强度信号,结合短期实测悬浮体质量浓度,反演长时间序列悬浮体质量浓度,定量分析了渤海湾近一年悬浮体质量浓度变化特征及其影响因素。结果表明:受风浪影响,该区悬浮体质量浓度具有明显季节性变化特征,风浪作用强烈的季节其悬浮体浓度表现为相对高值。悬浮体净输运同样具明显季节性变化,秋冬强风浪作用下,悬浮体的净输运量明显增加;而在不同季节,月净输运方向具有不同的主输运方向。悬浮体质量浓度日变化受潮流控制明显,长周期变化则主要与风场的变化有关。潮流涨急过程与风致大浪过程均可引起沉积物再悬浮,导致悬浮体浓度明显增高。  相似文献   
56.
利用ADCP和LISST-100仪观测悬浮物浓度的研究   总被引:3,自引:0,他引:3  
原野  赵亮  魏皓  江文胜 《海洋学报》2008,30(3):48-55
利用黄河口海床基声学多普勒流速剖面仪(ADCP)的周日观测资料对悬浮物浓度进行了反演,反演过程中综合考虑了球面扩散、声学近场的非球面扩散、海水和悬浮颗粒的吸收衰减以及其他因素对回声信号的影响,结果表明在粒径保持相对稳定的情况下,利用ADCP仪回声强度反演悬浮物浓度具有较高的精度.结合现场激光粒度仪(LISST-100)测得的粒径分布信息在反演过程中考虑了粒径修正,重点讨论了观测区域粒径变化对结果的影响,结果表明粒径的剧烈变化会降低体积后向散射强度与悬浮物浓度之间的相关性.大颗粒物质的存在使计算得到的悬浮物浓度偏高,粒径修正虽然在一定程度上消除了这种影响,但线性拟合的相关性并未提高.  相似文献   
57.
ADCP声波流速流向剖面仪在海洋环境监测与评价中的应用   总被引:4,自引:0,他引:4  
胡平  李文杰 《物探与化探》2004,28(4):341-344,348
在简述ADCP声波流速流向剖面仪基本原理的基础上,结合几个典型的环境监测工程实例,简单地介绍了该技术在香港特别行政区海洋环境质量监测、海洋工程环境评价等方面的应用成果.工程应用的实际结果表明,采用ADCP技术能够获得良好的环境监测效果,阐明了这一技术在环境质量监测应用方面的重要性和有效性.  相似文献   
58.
This study investigates the impact of flow structure of different discharges on meander point bar morphology. We carried out mobile and terrestrial laser scanning campaigns before and after a flood on two sandy‐bed point bars. Between the scans, the flow structure was examined using an Acoustic Doppler Current Profiler at three flow stages. The results indicated that a meander point bar both affects and in turn, is itself modified by the flow at different discharges. The lower flow stages also have a significant effect on point bar morphology, especially on deposition over the bar head. Secondary circulation is responsible for scroll bar formation on the point bar margin beyond the apex. Flow separation at the inner bank, by contrast, does not require secondary circulation, but is dependent on flow depth over the point bar. A sudden increase in depth beyond the point bar top causes decreased stream power over the bar tail. The flow separation and decreased stream power cause a slow flow zone and net deposition over point bar tail. The backwater effect, if evident, may strengthen the process. Thus, filling over the bar tail seems generic for point bars and independent on secondary flow. Chutes and chute bars, scroll bars, bar head filling and bar platform filling, by contrast, require special fluvio‐morphological circumstances discussed in this paper. Whilst this paper confirms that the three‐dimensional flow structure has a major effect on point bar morphology, the flow structure seems to depend on how the point bar affects the flow trajectory which, in turn, depends upon the flow stage. Finally, the shape of the bend and the grain size distribution control the impacts of the flow structure, leading to divergent morphologies of point bars with certain generic features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
60.
Acoustic Doppler current profilers (ADCPs) have been used to measure Reynolds stresses in tidally dominated environments where wave action was minimal. In this paper, we examine observations from a microtidal estuary where the effects of wind stress and surface waves dominate the velocity variance. Reynolds stress measurements in this setting require a technique for addressing surface gravity wave contamination. We present here a method of reducing the effect of wave motion on Reynolds stresses by subtracting coincident observations along the axis of the ADCP beam. Linear wave theory is used to account for the attenuation of wave orbital velocities with depth. Using this method, Reynolds stress values are brought in line with those predicted by drag laws at the surface and bottom. The apparent Reynolds stress that is removed by the along-axis subtraction is shown to be largely due to the interaction of a slight tilt (1°) in the ADCP and the wave orbital velocity. During periods of stronger wind and waves, there is evidence of enhanced near-surface turbulence and momentum flux, presumably due to breaking waves. During these events, our calculated Reynolds stress magnitudes still appear reasonable, although the directions are suspect. We develop a diagnostic technique that clearly demarcates this region when it occurs. Coincident density profile measurements are used with the ADCP data to compute gradient Richardson numbers throughout the water column. Enhanced Reynolds stresses appear to correspond to Richardson numbers less than one. Responsible editor: Alejandro Souza  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号