首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2221篇
  免费   420篇
  国内免费   786篇
测绘学   74篇
大气科学   976篇
地球物理   634篇
地质学   605篇
海洋学   650篇
天文学   89篇
综合类   103篇
自然地理   296篇
  2024年   17篇
  2023年   48篇
  2022年   85篇
  2021年   99篇
  2020年   77篇
  2019年   98篇
  2018年   98篇
  2017年   107篇
  2016年   130篇
  2015年   115篇
  2014年   164篇
  2013年   142篇
  2012年   154篇
  2011年   147篇
  2010年   124篇
  2009年   158篇
  2008年   162篇
  2007年   197篇
  2006年   167篇
  2005年   140篇
  2004年   134篇
  2003年   129篇
  2002年   107篇
  2001年   98篇
  2000年   82篇
  1999年   59篇
  1998年   63篇
  1997年   79篇
  1996年   54篇
  1995年   49篇
  1994年   37篇
  1993年   25篇
  1992年   16篇
  1991年   8篇
  1990年   16篇
  1989年   8篇
  1988年   15篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1980年   3篇
  1978年   1篇
排序方式: 共有3427条查询结果,搜索用时 19 毫秒
71.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
72.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
73.
内蒙古自治区察右后旗乌兰哈达苏木地热勘探井井深2006.87 m。采用石油30型钻机施工,钻遇地层大部分为变质岩,达1500 m以上,对牙轮钻头损坏严重,同时施工要求进行18次岩心采取。经过对钻头的试用、选择,最后选用HJ637G型牙轮钻头,钻进时效可达0.8~1.2 m,使用寿命可达到80~100 h。取心段采用川7-4型双管单动取心筒配合金刚石钻头,岩心采取率可达70%~95%。  相似文献   
74.
京津冀地区一次强沙尘天气过程的成因及特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规污染物监测资料、卫星资料和再分析资料等,对京津冀地区在2017年春季遭遇的一次强沙尘天气过程进行分析。结果表明,此次过程是由地面冷锋过境,高空槽后冷空气持续补充引起,沙源地主要位于巴丹吉林、腾格里沙漠,随后以西北路径输送至京津冀地区。前期沙源地感热通量迅速增大,与中低层冷平流叠加,导致不稳定层结增强,助于起沙;高空强风速带加强并向下延伸,中低层次级环流发展,不但使沙尘传输并下降至地面,而且使高层高动量和高位涡冷空气下传,促进低空急流形成、低层系统发展,使大风及沙尘天气维持;沙尘过境时,地面至4 km高度存在沙尘型气溶胶,PM_(2.5)和PM_(10)浓度变化趋势较一致并达到重度污染水平,且气溶胶光学厚度(Aerosol Optical Depth,AOD)与空气质量指数(Air Quality Index,AQI)具有较好的时空匹配关系,重污染时段AOD值大于1,污染减弱时AOD值降至0.6以下。  相似文献   
75.
Abstract

Vorticity, although not the primary variable of fluid dynamics, is an important derived variable playing both mathematical and physical roles in the solution and understanding of problems. The following treatment discusses the generation of vorticity at rigid boundaries and its subsequent decay. It is intended to provide a consistent and very broadly applicable framework within which a wide range of questions can be answered explicitly. The rate of generation of vorticity is shown to be the relative tangential acceleration of fluid and boundary without taking viscosity into account and the generating mechanism therefore involves the tangential pressure gradient within the fluid and the external acceleration of the boundary only. The mechanism is inviscid in nature and independent of the no-slip condition at the boundary, although viscous diffusion acts immediately after generation to spread vorticity outward from boundaries. Vorticity diffuses neither out of boundaries nor into them, and the only means of decay is by cross-diffusive annihilation within the fluid.  相似文献   
76.
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.  相似文献   
77.
以IPS速度、光球磁场、K─日冕偏振亮度和卫星实地观测数据为基础,综合生成处于太阳活动上升期的1976年10个太阳周(1643─1652卡林顿周)的源表面高度(R=2.5Rs,Rs为太阳半径)和日球空间中(IAU)太阳同质量流量速度谱。结果表明,速度谱存在与太阳活动上升期一致的"三段"结构,且各段分别与不同的磁结构区相对应。  相似文献   
78.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
79.
The MedFlux project was devised to determine and model relationships between organic matter and mineral ballasts of sinking particulate matter in the ocean. Specifically we investigated the ballast ratio hypothesis, tested various commonly used sampling and modeling techniques, and developed new technologies that would allow better characterization of particle biogeochemistry. Here we describe the rationale for the project, the biogeochemical provenance of the DYFAMED site, the international support structure, and highlights from the papers published here. Additional MedFlux papers can be accessed at the MedFlux web site (http://msrc.sunysb.edu/MedFlux/).  相似文献   
80.
Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly dependent on the wind speed, which fluctuates largely during the winter season. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号