The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionUPb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690750°C and 57 kbar, corresponding toan intrusion depth of 1925 km. At 337 ± 1 Ma themagmaticmetamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 711 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 57 to 24 kbar at 690750°C.Subsequently, the metamorphicmagmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published KAr muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; UPb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection相似文献
Recent mineral separate ages obtained on the Karoo large igneous province (southern Africa) suggest that the province was built by several distinct magmatic pulses over a rather long period on the order of 5–6 Ma concerning the main erupted volume [Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M.K., Le Gall., B., 2005. The Karoo large igneous province: Brevity, origin, and relation with mass extinction questioned by new 40Ar/39Ar age data, Geology 33, 745–748]. Although this apparently atypical province is dated in more detail compared to many other large igneous provinces, volumetrically important areas still lack sufficient high-quality data. The timing of the Karoo province is crucial as this event is correlated with the breakup activity of the Gondwana supercontinent. The Lesotho basalts represent a major lava sequence of the province, but have not yet been precisely dated by systematic analysis of mineral separates. We analyzed plagioclase separates from five lava flows encompassing the complete 1.4-km-thick Lesotho sequence from top to bottom using the 40Ar/39Ar method. We obtained five plateau and mini-plateau ages statistically indistinguishable and ranging from 182.3 ± 1.6 to 181.0 ± 2.0 Ma (2σ). We derived an apparent maximum duration for this event of 0.8 Ma by neglecting correlated errors embedded in the age uncertainties.
A critical review of previous ages obtained on the Lesotho sequence [Duncan R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., Duncan, A.R., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research 102, 18127–18138] shows that groundmass analyses are unreliable for high-resolution geochronology, due to alteration and 39Ar recoil effects. Discrepancy between our ages and a previous plagioclase age at 184 Ma obtained by the later workers is tentatively attributed to the heterogeneity of the monitor used and/or cryptic excess 40Ar. The current age database suggests that at least three temporally and spatially distinct brief major events (the Lesotho and southern Botswana lava piles and the Okavango dyke swarm) are so far recognized in the Karoo province. Identification of brief and volumetrically important Karoo magmatic events allows detecting the migration of the Karoo magmatism and potentially the stress regime that affected the southern African lithosphere at this time. A filtered compilation of 60 ages obtained with homogeneous intercalibrated standards suggests a shorter duration for the main pulses of the magmatism between 3 and 4.5 Ma, compared to a whole province duration of 10 Ma, between 182 and 172 Ma. 相似文献
U-Pb SHRIMP dating of zircons of metamagmatites from the Bayerischer Wald (Germany) reveals a complex evolution of this section of the Moldanubian Zone exposed in the western Bohemian Massif of the central European Variscan belt. In the south-western part of the Bayerischer Wald Upper Vendian magmatism is constrained by pooled 206Pb/238U mean ages of 555±12, 549±7 and 549±6 Ma from metarhyolites and a metabasite. Inherited zircon cores were not observed. Zircon overgrowths, yielding pooled 206Pb/238U ages of 316±10 and 319±5 Ma, provide evidence for Variscan metamorphic zircon growth; cathodoluminescence imaging reveals a two-stage metamorphic overprint.In contrast, Lower Ordovician magmatism and anatexis are documented in the north-eastern parts of the Bayerischer Wald by metagranitoids (480±6, 486±7 Ma), an eclogitic metabasite (481±8 Ma) and a leucosome (491 to 457 Ma). Inherited zircon cores are found in Lower Ordovician metagranitoids and the leucosome, indicating a Palaeoproterozoic-Archaean (ca. 2.7, 2.0 Ga) source region, presumably of Gondwana affinity (West African craton), and documenting Cadomian magmatism (ca. 640 Ma). Post-Cadomian metamorphism is inferred from concordant ages of 433±4 and 431±7 Ma.Upper Vendian magmatism is assumed at an active continental margin with ensialic back-arc development (εNd(t) –3.01 to +1.22); the lack of inherited zircon is due to either derivation from juvenile (?volcanic arc) material or complete isotopic resetting of pre-existing zircon. An active continental margin setting, possibly with some lateral variation (accretion/collision) is envisaged for the Lower Ordovician, producing granitoids, rhyolites and leucosomes (εNd(t) -0.5 to -6.27); MORB-type metabasites may be related to ZEV or Mariánské Lázně Complex metabasites. A tentative palaeogeographic reconstruction puts the “Bayerischer Wald” in close relationship with the Habach terrane (proto-Alps), as the “eastern” extension of terranes of the northern Gondwana margin. 相似文献