首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23169篇
  免费   4460篇
  国内免费   4334篇
测绘学   3057篇
大气科学   1987篇
地球物理   6697篇
地质学   10310篇
海洋学   3115篇
天文学   2453篇
综合类   1404篇
自然地理   2940篇
  2024年   68篇
  2023年   232篇
  2022年   706篇
  2021年   824篇
  2020年   877篇
  2019年   1066篇
  2018年   854篇
  2017年   999篇
  2016年   1018篇
  2015年   1071篇
  2014年   1318篇
  2013年   1306篇
  2012年   1400篇
  2011年   1452篇
  2010年   1184篇
  2009年   1600篇
  2008年   1542篇
  2007年   1617篇
  2006年   1603篇
  2005年   1407篇
  2004年   1344篇
  2003年   1210篇
  2002年   1028篇
  2001年   872篇
  2000年   829篇
  1999年   728篇
  1998年   745篇
  1997年   504篇
  1996年   430篇
  1995年   400篇
  1994年   371篇
  1993年   319篇
  1992年   261篇
  1991年   176篇
  1990年   129篇
  1989年   114篇
  1988年   83篇
  1987年   82篇
  1986年   52篇
  1985年   24篇
  1984年   8篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   15篇
  1978年   11篇
  1977年   10篇
  1976年   5篇
  1954年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
922.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
923.
Most of previous analyses on the active earth pressure were performed in two-dimensional cases using the Mohr-Coulomb (M-C) failure function to describe the soil strength. However, all failures of retained slopes indicate a somewhat three-dimensional (3D) feature, and the M-C function is found to overestimate the tensile strength of cohesive soil. In this work, a kinematic limit analysis–based approach is developed for computing the 3D active earth pressure resulting from cohesive backfills. The concept of tensile strength cutoff is adopted to implement the reduction or elimination of tensile strength from the strength envelope. An extended 3D horn failure mechanism that is associated with the modified strength envelope is developed to characterize the collapse of retained slopes. The resultant of active earth pressure is evaluated from the work rate balance equation and expressed as an unfactored coefficient. The obtained results indicate that less support provided by the wall is required when allowing the existence of soil cohesion and 3D effects and that eliminating the tensile strength can observably increase the active earth pressure, especially for the backfill with a great level of cohesion.  相似文献   
924.
925.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
926.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   
927.
This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for the analysis of segmental tunnel linings. The influence of segmental joints has been considered directly using a fixity ratio that is determined on the basis of the rotational stiffness. The parameters necessary for the calculation are presented. A specific implementation has been developed using a FEM framework. This code is able to consider the three‐dimensional (3D) effect of segment joints in successive rings on the tunnel lining behaviour. The present HRM allows one to take an arbitrary distribution of segment joints along the tunnel boundary into consideration. In addition, the rotational stiffness of segment joints has been simulated using nonlinear behaviour, as it is closer to the true behaviour of a joint than linear or bilinear behaviour. The numerical results of three hypotheses on ring interaction, which allow the 3D effect of a segmental tunnel lining to be taken into account, have been compared with data obtained from the shield‐driven tunnel of the Bologna–Florence high‐speed railway line project. The numerical results presented in the paper show that the proposed HRM can be used to effectively estimate the behaviour of a segmental tunnel lining. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
928.
该文以中国南方一厚碳酸盐岩覆盖区的RVSP三维地震勘探实例,对RVSP三维地震勘探观测系统和数据采集参数的确定、地面等效处理和波场分离等关键处理技术及地质效果进行了阐述和分析,说明了RVSP在克服表浅层复杂地质条件及环境条件对资料的影响及提高地震资料的分辨率有其特定的优势,同时也提出了RVSP三维地震在采集和处理过程中的难点。  相似文献   
929.
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distribution of soil pipe collapse features. The study aimed to determine the connectivity of multiple soil pipe networks as well as determine pipe flow velocities during storm events. Fluorescein dye was injected directly into soil pipes at the upper most pipe collapse feature of four different hillslopes. Breakthrough curves (BTC) were determined by sampling multiple pipe collapse features downslope. The BTCs were used to determine the ‘average’ (centre of mass) and ‘maximum’ (first arrival) flow velocities. This study confirmed that these catchments contain individual continuous soil pipe networks that extend over 190 m and connect the upper most hillslopes areas with the catchment outlet. While the flow paths are continuous, the individual pipe networks consist of alternating reaches of subsurface flow through soil pipes and reaches of surface flow through gullies formed by pipe collapses. In addition, flow can be occurring both through the subsurface soil pipes simultaneous with surface flow generated by artesian flow from the soil pipes. The pipe flow velocities were as high as 0.3 m/s, which was in the range of streamflow velocities. These pipe flow velocities were also in the range of velocities observed in pinhole erosion tests suggesting that these large, mature soil pipes are still actively eroding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
930.
ABSTRACT

A dipole structure appears in the sea surface height off the central coast of Vietnam during boreal summer in the South China Sea. This dipole, which possesses a chlorophyll signature associated with higher phytoplankton concentrations arising from nutrient upwelling, is important for the productivity of local fisheries. Multi-satellite sea level anomalies are used to investigate the life cycle of the dipole structure. By applying empirical orthogonal function (EOF) analysis, the third EOF mode (EOF 3) is found to represent the major variations of the dipole structure. By removing the temporal noise of EOF 3, a South China Sea dipole index is defined. This index captures the life cycle of the dipole including its generation, mature strength, and final termination. Both one-dimensional and two-dimensional forecasts are generated using a statistical forecasting method that combines singular-spectrum analysis and the maximum entropy method. The appearance of the dipole structure can be predicted with an accuracy of 78% at one-month lead times and an accuracy of 61% at one-year lead times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号