首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   45篇
  国内免费   64篇
测绘学   4篇
大气科学   18篇
地球物理   250篇
地质学   186篇
海洋学   9篇
天文学   23篇
综合类   7篇
自然地理   37篇
  2023年   7篇
  2022年   5篇
  2021年   11篇
  2020年   10篇
  2019年   12篇
  2018年   7篇
  2017年   9篇
  2016年   7篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   32篇
  2008年   56篇
  2007年   28篇
  2006年   27篇
  2005年   34篇
  2004年   30篇
  2003年   20篇
  2002年   24篇
  2001年   17篇
  2000年   18篇
  1999年   37篇
  1998年   17篇
  1997年   12篇
  1996年   13篇
  1995年   12篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1983年   2篇
排序方式: 共有534条查询结果,搜索用时 15 毫秒
111.
侯海海  张华杰  邵龙义  高莲凤  刘书君 《地质论评》2023,69(1):2023010017-2023010017
三叠纪末期生物大灭绝是全球地质历史时期五大生物灭绝事件之一,它致使海洋生态系统中约53%的属和80%的种灭绝。显著灭绝的生物包括菊石类、牙形类、放射虫类和陆地四足动物,发生部分灭绝的生物包括腕足类、介形类、双壳类和珊瑚类等。中大西洋火成岩省(CAMP)的爆发与三叠纪末期生物大灭绝在时间上具有较高的一致性,其火山的高强度和大面积喷发被认为是导致此次灭绝事件发生的主要原因。CAMP爆发释放出大量的CO2、SO2和CH4等气体,一方面温室效应促使海平面升高,物种栖息地面积减少、海洋酸化和海洋缺氧等事件直接威胁着海洋和陆地生物的生存环境;另一方面温室效应亦会引发全球性森林火灾,造成陆地植物减少,大量植物碳屑注入海洋使其发生富营养化,又因伴随海洋酸化作用(碳酸化和硫酸化),海洋古生产率发生崩溃。不同地质时期生物大灭绝的发生往往伴随着剧烈的环境变化,在三叠纪末生物大灭绝期,这些变化多表现为古大气成分和古气温动荡、古火灾频繁、海洋酸化、海平面升高和海水缺氧等,它们之间的综合作用最终导致三叠纪末期全球生态系统失稳。在全球多个三叠纪—侏罗纪之交(TJB)剖面均可以识别出3次明显的碳同位素负偏移,最显著的1次发生于瑞替期末,早于TJB。上述情况说明,三叠纪末期生物大灭绝虽然是全球性事件,但并不是1次发生的,具有分阶段性、非同步性、区域性和有选择性等特点。  相似文献   
112.
三叠纪末期生物大灭绝是全球地质历史时期5大生物灭绝事件之一,它致使海洋生态系统中约53%的属和80%的种灭绝。显著灭绝的生物包括菊石亚纲、牙形类、放射虫目和陆地四足动物,发生部分灭绝的生物包括腕足动物门、介形亚纲、双壳纲和珊瑚纲等。中大西洋火成岩省(CAMP)的爆发与三叠纪末期生物大灭绝在时间上具有较高的一致性,其火山的高强度和大面积喷发被认为是导致此次灭绝事件发生的主要原因。CAMP爆发释放出大量的CO2、SO2和CH4等气体,一方面温室效应促使海平面升高,物种栖息地面积减少、海洋酸化和海洋缺氧等事件直接威胁着海洋和陆地生物的生存环境;另一方面温室效应亦会引发全球性森林火灾,造成陆地植物减少,大量植物碳屑注入海洋使其发生富营养化,又因伴随海洋酸化作用(碳酸化和硫酸化),海洋古生产率发生崩溃。不同地质时期生物大灭绝的发生往往伴随着剧烈的环境变化,在三叠纪末生物大灭绝期,这些变化多表现为古大气成分和古气温动荡、古火灾频繁、海洋酸化、海平面升高和海水缺氧等,它们之间的综合作用最终导致三叠纪末期全球生态系统失稳。在全球多个三叠...  相似文献   
113.
中国探明硼资源主要分布于东北和青藏等地区,矿床品位低,共伴生矿物多,开发成本高,开发利用程度低,难以满足产业发展需求。目前,在江汉盆地江陵凹陷勘探中发现卤水中B2O3浓度达3 g/L,Li、K、Br、I、Rb、Cs含量超过工业品位,综合利用价值高。本文在前人研究的基础上,对江陵凹陷新生代卤水型硼矿开展水化学、同位素地球化学及实验地球化学分析,重点研究了古气候、构造和玄武岩等对卤水成矿的影响,探究其成因机制。研究初步认为,不同的储卤层岩性具有不同的地球化学和同位素特征,玄武岩有强烈的蚀变,说明地下流体对火成岩发生了交代作用,玄武岩的水-岩反应是富硼卤水矿的重要物质来源;一定盐度的流体有利于硼离子的活化,高盐度流体是硼成矿元素主要的迁移载体,表生环境下干热的古气候使含矿水体蒸发浓缩是富硼卤水富集成矿的重要形成机制。  相似文献   
114.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   
115.
116.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   
117.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   
118.
1991年是青海省最热的年份之一,而且青海省各地降水量时空分布不均匀。本文分析了导致今年天气异常发生的主要原因。  相似文献   
119.
The southwest Hokkaido tsunami of July 12th, 1993, left continuous onshore sand deposits along the west coast of Oshima Peninsuka, Hokkaido, northern Japan. We investigated spatial distribution and lithofacies of the new tsunami deposits for its identification of ancient tsunami deposits. An eyewitness acount and bent plants helped our interpretation of the onshore tsunami behavior. We regard the following properties as typical of the coastal tsunami sand deposits: (1) The deposits cover the surface almost continuously on gentle topography. (2) Deposit thicknesses and mean grain sizes descrease with distance from the sea. (3) Deposit thicknesses and lithofacies vary greatly across local surface undulation. (4) Graded bedding reflecting tsunami runup and backwash is present in thick deposits. (5) The deposits are widely distributed along the coast and extend inland several tens of meters to 100 m. We examined a candidate for the paleo-tsunami deposits associated with the 1640 Komagatake eruption, and confirmed that the similar patterns are typical of ancient tsunami deposits.  相似文献   
120.
The eruptions of Thera (Santorini) between 1628 and 1450 BC constituted a natural catastrophe unparalleled in all of history. The last major eruption in 1450 BC destroyed the entire Minoan Fleet at Crete at a time when the Minoans dominated the Mediterranean world. In addition, there had to be massive loss of life from ejecta gases, volcanic ash, bombs, and flows. The collapse of a majestic mountain into a caldera 15 km in diameter caused a giant ocean wave, a tsunami, that at its source was estimated in excess of 46 m high. The tsunami destroyed ships as far away as Crete (105 km) and killed thousands of people along the shorelines in the eastern Mediterranean area. At distant points in Asia Minor and Africa, there was darkness from ash fallout, lightning, and destructive earthquakes. Earthquake waves emanating from the epicenter near the ancient volcano were felt as far away as the Norwegian countries. These disturbances caused great physical damage in the eastern Mediterranean and along the rift valley system from Turkey to the south into central Africa. They caused major damage and fires in north Africa from Sinai to Alexandria, Egypt. Volcanic ash spread upward as a pillar of fire and clouds into the atmosphere and blocked out the sun for many days. The ash reached the stratosphere and moved around the world where the associated gases and fine particulate matter impacted the atmosphere, soils, and waters. Ground-hugging, billowing gases moved along the water surface and destroyed all life downwind, probably killing those who attempted to flee from Thera. The deadly gases probably reached the shores of north Africa. Climatic changes were the aftermath of the eruption and the atmospheric plume was to eventually affect the bristlecone pine of California; the bog oaks of Ireland, England, and Germany, and the grain crops of China. Historical eruptions at Krakatau, Tambora, Vesuvius, and, more currently, eruptions at Nevado del Ruiz, Pinatubo, and Mount Saint Helens, have done massive environmental damage but none can compare with the sociological, religious, economic, agricultural, and political impacts from Thera (Santorini). Major natural catastrophes that have occurred over historical time illustrate the force of nature and the impact on civilizations. Some examples of these are rains that flooded the Euphrates Valley during the time of Noah, and floods, earthquakes, and hurricanes in recent years, such as earthquakes in California and Hurricane Hugo on the east coast of the United States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号