首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9601篇
  免费   2379篇
  国内免费   1468篇
测绘学   635篇
大气科学   790篇
地球物理   4589篇
地质学   4558篇
海洋学   1151篇
天文学   576篇
综合类   337篇
自然地理   812篇
  2024年   33篇
  2023年   111篇
  2022年   200篇
  2021年   286篇
  2020年   303篇
  2019年   526篇
  2018年   663篇
  2017年   676篇
  2016年   736篇
  2015年   693篇
  2014年   754篇
  2013年   1097篇
  2012年   719篇
  2011年   712篇
  2010年   565篇
  2009年   556篇
  2008年   664篇
  2007年   532篇
  2006年   556篇
  2005年   499篇
  2004年   440篇
  2003年   368篇
  2002年   316篇
  2001年   265篇
  2000年   281篇
  1999年   150篇
  1998年   114篇
  1997年   105篇
  1996年   83篇
  1995年   76篇
  1994年   80篇
  1993年   58篇
  1992年   61篇
  1991年   41篇
  1990年   35篇
  1989年   22篇
  1988年   20篇
  1987年   7篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper presents two test procedures for evaluating the bond stress–slip and the slip–radial dilation relationships when the prestressing force is transmitted by releasing the steel (wire or strand) in precast prestressed elements. The bond stress–slip relationship is obtained with short length specimens, to guarantee uniform bond stress, for three depths of the wire indentation (shallow, medium and deep). An analytical model for bond stress–slip relationship is proposed and compared with the experimental results. The model is also compared with the experimental results of other researchers. Since numerical models for studying bond‐splitting problems in prestressed concrete require experimental data about dilatancy angle (radial dilation), a test procedure is proposed to evaluate these parameters. The obtained values of the radial dilation are compared with the prior estimated by numerical modelling and good agreement is reached. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
993.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   
994.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   
995.
The two drill holes, which penetrated sub‐horizontal rare earth element (REE) ore units at the Nechalacho REE in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify the enrichment mechanism of the high‐field‐strength elements (HFSE: Zr, Nb and REE). The REE ore units occur in the albitized and potassic altered miaskitic syenite. Zircon is the most common REE mineral in the REE ore units, and is divided into five types as follows: Type‐1 zircon occurs as discrete grains in phlogopite, and has a chemical character similar to igneous zircon. Type‐2 zircon consists of a porous HREE‐rich core and LREE–Nb–F‐rich rim. Enrichment of F in the rim of type‐2 zircon suggests that F was related to the enrichment of HFSE. The core of type‐2 zircon is regarded to be magmatic and the rim to be hydrothermal in origin. Type‐3 zircon is characterized by euhedral to anhedral crystals, which occur in a complex intergrowth with REE fluorocarbonates. Type‐3 zircon has high REE, Nb and F contents. Type‐4 zircon consists of porous‐core and ‐rim, but their chemical compositions are similar to each other. This zircon is a subhedral crystal rimmed by fergusonite. Type‐5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircon grains are filled by fergusonite. Type‐4 and type‐5 zircon grains have low REE, Nb and F contents. Type‐1 zircon is only included in one unit, which is less hydrothermally altered and mineralized. Type‐2 and type‐3 zircon grains mainly occur in the shallow units, while those of type‐4 and type‐5 are found in the deep units. The deep units have high HFSE contents and strongly altered mineral textures (type‐4 and type‐5) compared to the shallow units. Occurrences of these five types of zircon are different according to the depth and degree of the hydrothermal alteration by solutions rich in F and CO3, which permit a model for the evolution of the zircon crystallization in the Nechalacho REE deposit as follows: (i) type‐1 (discrete magmatic zircon) is formed in miaskitic syenite. (ii) LREE–Nb–F‐rich hydrothermal zircon formed around HREE‐rich magmatic zircon (type‐2). (iii) type‐3 zircon crystallized through the F and CO3‐rich hydrothermal alteration of type‐2 zircon which formed the complex intergrowth with REE fluorocarbonates; (iv) the CO3‐rich hydrothermal fluid corroded type‐3, forming REE–Nb‐poor zircon (type‐4). Niobium and REE were no longer stable in the zircon structure and crystallized as fergusonite around the REE–Nb‐leached zircon (type‐4); (v) type‐5 zircon is formed by the more CO3‐rich hydrothermal alteration of type‐4 zircon, suggested by the fact that type‐4 and type‐5 zircon grains are often included in ankerite. Type‐3 to type‐5 zircon grains at the Nechalacho REE deposit were continuously formed by leaching and/or dissolution of type‐2 zircon in the presence of F‐ and/or CO3‐rich hydrothermal fluid. These mineral associations indicate that three representative hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (i) F‐rich hydrothermal stage caused the crystallization of REE–Nb‐rich zircon (type‐2 rim and type‐3), with abundant formation of phlogopite and fluorite; (ii) F‐ and CO3‐rich hydrothermal stage led to the replacement of a part of REE–Nb–F‐rich zircon by REE fluorocarbonate; and (iii) CO3‐rich hydrothermal stage resulted in crystallization of the REE–Nb–F‐poor zircon and fergusonite, with ankerite. REE and Nb in hydrothermal fluid at the Nechalacho REE deposit were finally concentrated into fergusonite by way of REE–Nb–F‐rich zircon in the hydrothermally altered units.  相似文献   
996.
Cordierite‐bearing anatectic rocks inform our understanding of low‐pressure anatectic processes in the continental crust. This article focuses on cordierite‐bearing lithologies occurring at the upper structural levels of the Higher Himalayan Crystallines (eastern Nepal Himalaya). Three cordierite‐bearing gneisses from different geological transects (from Mt Everest to Kangchenjunga) have been studied, in which cordierite is spectacularly well preserved. The three samples differ in terms of bulk composition likely reflecting different sedimentary protoliths, although they all consist of quartz, alkali feldspar, plagioclase, biotite, cordierite and sillimanite in different modal percentages. Analysis of the microstructures related to melt production and/or melt consumption allows the distinction to be made between peritectic and cotectic cordierite. The melt productivity of different prograde assemblages (from two‐mica metapelite/metagreywacke to biotite‐metapelite) has been investigated at low‐pressure conditions, evaluating the effects of muscovite v. biotite dehydration melting on both mineral assemblages and microstructures. The results of the thermodynamic modelling suggest that the mode and type of the micaceous minerals in the prograde assemblage is a very important parameter controlling the melt productivity at low‐pressure conditions, the two‐mica protoliths being significantly more fertile at any given temperature than biotite gneisses over the same temperature interval. Furthermore, the cordierite preservation is promoted by melt crystallization at a dry solidus and by exhumation along P‐T paths with a peculiar dP/dT slope of about 15–18 bar °C?1. Overall, our results provide a key for the interpretation of cordierite petrogenesis in migmatites from any low‐P regional anatectic terrane. The cordierite‐bearing migmatites may well represent the source rocks for the Miocene andalusite‐bearing leucogranites occurring at the upper structural levels of the Himalayan belt, and low‐P isobaric heating rather than decompression melting may be the triggering process of this peculiar peraluminous magmatism.  相似文献   
997.
A petrographic investigation revealed polyphase quartz cementation in the Finefrau Sandstone (Upper Carboniferous, Western Germany) and the Solling Sandstone (Lower Triassic, Central Germany). Three different cements could be distinguished in each sandstone based on their cathodoluminescence and trace element composition. The first quartz generation is suggested to have been formed during eogenesis due to dissolution and replacement of feldspar. The mesogenetic paragenesis comprises two generations of quartz and illite, which are accompanied by albite in the Solling Sandstone. Sharp luminescence zoning in quartz overgrowths points to distinct episodes of cementation in both sandstones. Significant amounts of Al, Li and H and traces of Ge and B have been detected in the quartz overgrowths. The Al‐content of the quartz cements in the Finefrau Sandstones exceeds that in the quartz cements in the Solling Sandstone by a factor of five. It is suggested that this compositional variation reflects the conditions in the pore‐water, such as temperature and pH. The Al‐concentration is generally correlated to the Li‐content with the exception of the latest quartz generation in the Finefrau Sandstones which is also most enriched in trace elements. The ratio of Li/Al varies between 0·11 and 0·25 in the two sandstones. The Li/H‐ratio, which ranges from 0·12 to 0·3, is controlled by the activity ratio of Li and H in the pore fluid. Clay minerals are the most important source for Li and high salinities favour the mobilization of Li during diagenesis. Thus, a relatively low salinity and low pH are responsible for the low Li/H‐ratio in the Finefrau Sandstone, while high salinity and neutral to alkaline pH results in a high Li/H‐ratio for the Solling Sandstone. The Ge‐contents are generally near the average of detrital quartz and indicate that pressure dissolution is a major source for quartz cementation. Different chemical compositions of distinct quartz generations indicate changes in the physico‐chemical conditions and point to mobilization of silica from different sources (for example, pressure solution and clay mineral transformations).  相似文献   
998.
Oceanic islands – such as the Azores in the mid‐North Atlantic – are periodically exposed to large storms that often remobilize and transport marine sediments along coastlines, and into deeper environments. Such disruptive events create deposits – denominated tempestites – whose characteristics reflect the highly dynamic environment in which they were formed. Tempestites from oceanic islands, however, are seldom described in the literature and little is known about storm‐related sediment dynamics affecting oceanic island shelves. Therefore, the geological record of tempestite deposits at oceanic islands can provide invaluable information on the processes of sediment remobilization, transport and deposition taking place on insular shelves during and after major storms. In Santa Maria Island (Azores), a sequence of Neogene tempestite deposits was incorporated in the island edifice by the ongoing volcanic activity (thus preserved) and later exposed through uplift and erosion. Because it was overlain by a contemporary coastal lava delta, the water depth at the time of deposition could be inferred, constituting an excellent case‐study to gain insight on the still enigmatic processes of insular shelf deposition. Sedimentological, palaeontological, petrographic and palaeo‐water depth information allowed the reconstruction of the depositional environment of these sediments. The sequence typifies the characteristics of a tempestite (or successive tempestites) formed at ca 50 m depth, in a steep, energetic open insular shelf, and with evidence for massive sediment remobilization from the nearshore to the middle or outer shelf. The authors claim that cross‐shelf transport induced by storm events is the main process of sediment deposition acting on steep and narrow shelves subjected to high‐energetic environments, such as the insular shelves of open‐sea volcanic islands.  相似文献   
999.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   
1000.
王良民  叶剑红  朱长歧 《岩土力学》2015,36(12):3583-3588
利用一个经过广泛验证的数值模型FSSI-CAS 2D为计算工具,采用砂土的高级本构模型Pastor-Zienkiewicz-Mark III (PZIII) 描述海床砂土的动态力学行为,定量研究松散海床地基土在波浪作用下,其内部的液化过程和特征,以加深对波致海床液化特征、性质的认识。计算结果分析表明,开发的耦合数值模型FSSI-CAS 2D能够很好地捕捉到波浪作用下欠密实海床的动力响应特征,以及海床内的累积液化过程等一些列的非线性物理现象。研究表明,波浪导致的松砂海床液化是一个渐进过程,海床表面首先液化,并逐渐向下扩展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号