首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   41篇
  国内免费   40篇
大气科学   188篇
地球物理   18篇
地质学   71篇
海洋学   6篇
综合类   5篇
自然地理   62篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   24篇
  2012年   19篇
  2011年   26篇
  2010年   21篇
  2009年   33篇
  2008年   16篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   8篇
  2003年   13篇
  2002年   9篇
  2001年   17篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1959年   2篇
排序方式: 共有350条查询结果,搜索用时 0 毫秒
161.
近50年中国蒸发皿蒸发量变化   总被引:18,自引:2,他引:16  
Trends in pan evaporation are widely relevant to the hydrological community as indicators of hydrological and climate change. Pan evaporation has been decreasing in the past few decades over many large areas with differing climates globally. This study analyzes pan evaporation data from 671 stations in China over the past 50 years in order to reveal the trends of it and the corresponding trend attribution. Mann-Kendall test shows a significant declining trend in pan evaporation for most stations, with an average decrease of 17.2 mm/10a in China as a whole, the rate of decline was the steepest in the humid region (29.7 mm/10a), and was 17.6 mm/10a and 5.5 mm/10a in the semi-humid/semi-arid region and arid region, respectively. Complete correlation coefficients of pan evaporation with 7 climate factors were computed, and decreases in diurnal temperature range (DTR), SD (sunshine duration) and wind speed were found to be the main attributing factors in the pan evaporation declines. Decrease in DTR and SD may relate to the increase of clouds and aerosol as well as the other pollutants, and decrease in wind speed to weakening of the Asian winter and summer monsoons under global climate warming.  相似文献   
162.
小型蒸发器蒸发量测定为负值的原因   总被引:1,自引:0,他引:1  
郝梅 《广东气象》2005,(3):48-48
在小型蒸发器蒸发量的观测过程中,有时因一些不明原因,致使蒸发量测定值成为负值。小型蒸发器蒸发量计算公式为蒸发量=原量+降水量-余量,由此可直观看出小型蒸发器蒸发量若为负值,只有一个原因,那就是小型蒸发器的原量+降水量<蒸发余量。现就这一原因进行分析。(1)因小型蒸发器与蒸发专用雨量器构造不同、安装位置不同,对降水量测量结果的减少存在重要的影响。小型蒸发器为口径20 cm、高约10 cm的金属圆盆,受水界面较为单一;而蒸发专用雨量器是由全新不锈钢的口径为20 cm的承水器(漏斗)、储水筒、储水瓶几个部件组成,承水器与漏斗连接面不是…  相似文献   
163.
在气象观测数据基础上,运用数理统计方法对讨赖河流域1957-2012年潜在蒸发量变化的研究表明:(1)讨赖河流域潜在蒸发量的季节变化不尽相同,秋、冬季潜在蒸发量20世纪60、70年代偏少,80、90年代及2000年后偏多;春、夏季潜在蒸发量60、80年代偏高、90年代及2000年以后偏低,年和湿季变化趋势相似,均表现为60-80年代偏低,90年代及2000年以后偏高。(2)就年际变化而言,年和湿季潜在蒸发量的变化趋势较为相似,季节潜在蒸发量均表现为增加趋势,夏季增幅最大,秋季最小。(3)各季节和年序列均存在10~15年的短周期变化及26~28年的长周期变化。(4)流域春、夏、秋、冬以及年和湿季潜在蒸发量分别在1995、2000、1984、1980、1997年和1992年突变增加,并通过了0.01的显著性水平检验;干季潜在蒸发量经历了两次突变增加,分别发生在1980年和1995年。  相似文献   
164.
运用经验正交函数(EOF)和交叉小波变换法,分析了湖南省1981―2013 年月蒸发量的时空分布特征及其与月平均气温之间的非线性交互关系。月蒸发量的EOF 分解表明:前3 个空间模态的累计贡献率达77.9%。其中EOF1(63.4%)揭示了湖南省月蒸发量最主要的时空分布特征呈东西反向型,体现出月蒸发量与高程之间存在一定的负相关性;EOF2(8.5%)具有正负位相频繁交替的时间系数,反映了更为复杂的时空变化特征;EOF3(6.0%)的值自西北向东南呈“+、-、+”分布。然后,分别选用洪江、桑植和新晃站作为3 个空间模态的代表站点,并计算出各站点的月蒸发量与月平均气温之间的交叉小波谱和小波一致性,结果表明:两者之间的相关性在8~16个月的时间尺度下最强,且其相位角均为0°,说明气温对蒸发量的影响在该时间尺度下最为显著且不存在时滞效应,但在<8 个月和>16 个月的时间尺度下,强相关性的出现频率和分布以及相位角的方向沿时间轴均呈现出较大的差异性。  相似文献   
165.
石羊河流域1961-2005年蒸发皿蒸发量变化趋势及原因初探   总被引:4,自引:0,他引:4  
 利用1961—2005年石羊河流域上、中、下游当地气象站的逐月20 cm口径蒸发皿蒸发量、平均气温、平均相对湿度、降水量、平均风速、日照时数、最高气温和最低气温资料,研究了近45 a石羊河流域蒸发皿蒸发量变化趋势及原因。结果表明,45 a来,石羊河流域及上、下游年蒸发皿蒸发量呈上升趋势,中游年蒸发皿蒸发量呈下降趋势,上游上升趋势最明显。四季中,春、秋、冬季蒸发皿蒸发量呈上升趋势,上升最明显的是冬季,其次为秋季,春季变化不明显,夏季蒸发皿蒸发量变化呈下降趋势。石羊河流域在不同时段不同区域年蒸发皿蒸发量都存在明显的6~7 a周期和1~2 a的短周期,并都发生了突变。相关系数法分析表明,影响石羊河流域及中、下游年蒸发皿蒸发量变化的主要影响因子是相对湿度和降水,上游的主要影响因子是相对湿度和气温。四季中,春季的主要影响因子是相对湿度和降水;夏季影响石羊河流域及上、中蒸发皿蒸发量变化的主要因子是相对湿度和气温,下游的主要影响因子是相对湿度和降水;秋季影响石羊河流域及中、下游蒸发皿蒸发量变化的主要影响因子是相对湿度和气温日较差,上游其主要影响因子是相对湿度和降水;冬季的主要影响因子是气温和相对湿度。影响年以及春、夏、秋最显著的因子是相对湿度,冬季最显著的影响因子是气温。  相似文献   
166.
利用长江流域147个气象站点1960—2007年的地面观测数据,通过计算,对比分析了长江流域20 cm口径蒸发皿蒸发量与太阳辐射的变化关系.结果表明:长江流域近50年来蒸发皿蒸发量变化和太阳辐射变化呈显著正相关关系,二者均呈现显著下降趋势,蒸发皿蒸发量随太阳辐射的变化产生相应波动变化,而且中下游地区蒸发皿蒸发量变化受太阳辐射变化的影响程度更为明显;就季节变化而言,春夏秋冬4个季节长江流域蒸发皿蒸发量变化和太阳辐射变化同样呈现明显下降趋势,春、夏、秋3个季节二者变化关系高度相关,这三季对于流域全年蒸发皿蒸发量减少的贡献也最大;长江流域太阳辐射的显著下降是导致20 cm口径蒸发皿蒸发量持续降低的主要原因之一.  相似文献   
167.
祁连山及河西走廊潜在蒸发量的时空变化   总被引:17,自引:3,他引:14       下载免费PDF全文
利用20个气象站1960-2006年的逐日气象资料,应用FAO Penman-Monteith模型,分析了祁连山及河西走廊潜在蒸发量的变化趋势,并在ArcGIS环境下通过Spline插值法分析了潜在蒸发量变化的空间分异,此外运用多元回归分析法对影响潜在蒸发量变化的主导因素进行了探讨。结果表明:祁连山及河西走廊的年潜在蒸发量在20世纪80年代之前偏高,之后偏低,在1967年之前呈减小趋势,之后呈增加趋势,1974年之后又呈减小趋势,1993年之后又呈增加趋势;年潜在蒸发量的年际变化率为-1.67mm,表明潜在蒸发量总体上呈减小趋势;从季节来看,秋季的潜在蒸发量呈增加趋势,其它季节呈减小趋势,其中春季的减小幅度最大;风速是影响潜在蒸发量变化的主导因素,影响秋季潜在蒸发量变化的主导因素是气温。  相似文献   
168.
青海湖水面蒸发量变化的研究   总被引:2,自引:0,他引:2  
利用青海湖区1958~2007年气象、水文站的观测资料和江西沟、刚察沙柳河2个站20cm口径蒸发皿与E-601型蒸发量的对比观测资料,计算了月、季、年蒸发量,并应用气候诊断方法分析了蒸发量的年代际变化规律及其突变特征。结果表明:青海湖区4~9月20cm口径蒸发皿湖水与淡水蒸发量的折算系数在0.91~0.97之间,5~9月E-601型与20cm口径蒸发皿蒸发量的折算系数在0.70~0.78之间,同期的蒸发量与温度、湿度、风速等因素关系密切。青海湖年蒸发量呈逐步减少的趋势,但其变化存在明显的阶段性。1958~1963年、1977~1981年、1998~2004年蒸发量增加,1964~1976年、1982~1997年、2005~2007年蒸发量减少。青海湖年蒸发量每25年发生一次突变,20世纪60、80年代蒸发量表现出不稳定,70、90年代是年蒸发量的相对平稳时段。青海湖降水量增多是导致蒸发量减少的最主要的原因之一。  相似文献   
169.
合理开发利用新疆水资源发展绿洲生态农业   总被引:12,自引:4,他引:12  
通过对新疆水资源开发利用有关的重大生态环境问题以及农用水资源开发利用中存在的问题的分析,对绿洲生态农业在新疆的发展提出了具可行性的对策和建议。  相似文献   
170.
渭干河灌区参考作物潜在腾发量的计算及相关分析   总被引:5,自引:1,他引:5  
利用Penman公式,根据位于渭干河灌区内的库车、沙雅、新和三县气象站1992~1996年气象观测资料,计算了参考作物潜在腾发量并建立了参考作物潜在蒸发量与其它气象要素的经验关系。根据这些经验关系进行参考作物潜在腾发量的估算,其结果可供该地区作物耗水量等研究时参照使用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号