首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   118篇
  国内免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   227篇
地质学   2篇
海洋学   1篇
天文学   12篇
综合类   1篇
自然地理   15篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   10篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   10篇
  1996年   15篇
  1995年   7篇
  1994年   12篇
  1993年   7篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   11篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1965年   2篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
91.
利用TC1、Cluster和Polar结合极光和同步高度及地磁的观测,研究了2004年9月14日1730~1930 UT时间段的亚暴偶极化过程.此前行星际磁场持续南向几个小时.亚暴初发(Onset)开始于1823 UT.2 min之后,同步高度的LANL 02A在子夜附近观测到了明显的能量电子增强(Injection)事件,而TC1在1827UT左右在磁尾(-10,-2, 0)RE (GSE)观测到了磁场BX的突然下降,伴随着等离子体压强和温度的突然增加及磁场的强烈扰动.在(-16, 1, 3)RE (GSE) 的Cluster上相同的仪器观测到相同的现象,只是比TC1观测到的晚大约23 min,在1850 UT左右.虽然Polar在更靠近地球的较高纬度(-75, 35, -40)RE (GSE)附近,也在1855 UT左右观测到了这种磁场偶极化现象.以上的观测时序表明TC1、Cluster观测到的磁场偶极化比亚暴偶极化初始发生分别晚4 min和27 min.说明偶极化由近磁尾向中磁尾传播.详细计算表明偶极化源区的位置大约在X=-77RE~-86RE,而传播速度大约为70 km·s-1.在这个事件中亚暴的物理图像可能是中磁尾的近地重联产生的地向高速流到达近磁尾,为近磁尾的亚暴触发创造了条件;亚暴在近磁尾触发之后,磁场偶极化峰面向中磁尾传播.  相似文献   
92.
王慧  虞蕾  郑志超 《地球物理学报》2020,63(4):1294-1307

本文利用Swarm卫星2015-2016年高精度的磁场矢量数据,将晨昏地方时扇区高纬场向电流(Field-Aligned Currents,FACs)事件按极性和电流密度分为四类,并首次比较研究了四类FACs事件的时空分布特征及其影响因素,研究发现:极性正常事件(晨侧靠极侧电流元向下流入电离层,靠赤道侧电流元向上流出电离层,昏侧电流极性相反,即传统意义上的R1和R2 FACs)发生率约为70%,其中R1 FACs强于R2事件的发生率为R1 FACs弱于R2的3~5倍;极性异常事件(与传统的R1和R2 FACs流向相反,两片电流元定义为R1*和R2* FACs)发生率约占30%,其中R1* < R2*的发生率约为R1* > R2*的1.5~2.5倍.进一步分析发现极性正常事件主要发生在南向IMF Bz期间,与重联电场相关性较好,净电流密度随着重联电场和电离层电导率的增加而增加.其中R1 < R2事件通常位于IMF Bz北向偏转期间,与亚暴过程有关.同时,极性异常事件通常发生于北向IMF Bz期间.相对于极性正常事件,极性异常事件所处磁纬向极侧偏移4°.在北半球,晨侧R1*>R2*事件通常发生在IMF By < 0期间,昏侧事件主要发生在IMF By>0期间,而R1* < R2*事件所对应IMF By极性相反,南半球情形与北半球相反.

  相似文献   
93.
采用非本征模方法(non-modal analysis)研究了磁层顶边界层中剪切流导致的MHD波模转化及其与背景流场的能量交换过程.发现在分别代表磁层顶内、外边界层及过渡区的均匀剪切流场中,初始设定的Alfvén波扰动可部分转化为快、慢磁声波.而且,在不同区域,根据等离子体参数的不同,发生的波模转化过程也不相同.在外边界,Alfvén波主要转化为慢磁声波;在内边界,Alfvén波则主要转化为快磁声波;而在二者之间的过渡区中,Alfvén波可同时转化为两种类型的磁声波.我们还发现,含有较强快波分量的扰动可从磁层顶剪切流场中获得能量而得到线性放大.上述物理过程可能对解释磁鞘至磁层的能量及动量异常输运现象有所帮助.  相似文献   
94.

基于Van Allen Probes近三年的EMFISIS仪器波动观测数据,对内磁层下频带哨声模合声波幅度的全球分布特性对地磁活动水平的依赖性进行了详细的统计分析,着重研究下频带合声波平均场强幅度随磁壳值L、磁地方时、地磁纬度的分布特征及不同强度区间的合声波的发生概率.结果表明,下频带合声波的波动强度与地磁活动密切正相关,处于强磁扰期间的合声波具有更大的振幅,其发生率与地磁活动强度具有同样的正相关特性.下频带合声波主要发生于午夜至下午的磁地方时区间,其余的磁地方时时段下频带合声波较弱.赤道面附近的下频带合声波主要分布在夜侧至黎明这一时段内,随着磁纬度的增加逐步向日侧扩展.下频带合声波在午夜侧(21-03 MLT)主要出现在15°的磁纬范围内,在晨侧(03-09 MLT)可以到达15°磁纬甚至更高纬度.下频带合声波主要发生于L=~4.5的附近区域.随着地磁活动的增加,下频带合声波所覆盖的L-shell空间区域增大,趋势为向高、低L值区域同时扩展.建立的下频带哨声合声波的全球分布模型将有助于进一步深入理解该重要磁层波动对辐射带电子的波粒作用散射效应和对辐射带动力学过程的定量贡献.

  相似文献   
95.
亚暴期间磁尾等离子体片离子注入内磁层能够激发电磁离子回旋(EMIC)波.对应于这种EMIC波,地面磁力仪可观测到周期逐渐减小的地磁脉动(IPDP).利用GOES卫星数据,地磁指数和加拿大CARISMA地磁台站的数据,我们研究了IPDP事件的产生与亚暴磁尾注入的关系.同时利用CARISMA地磁台链中的MCMU和MSTK两个台站,从2005年4月到2014年5月期间的观测数据,统计分析了亚暴期间的IPDP事件,研究了IPDP事件的出现率关于季节和磁地方时的分布特征.我们总共获得128个两个台站同时观测的IPDP事件.该类事件关于季节分布的发生率,冬季最小,为13.28%,春季最大,为32.81%,结果表明IPDP事件关于季节分布的发生率受到电离层电导率及亚暴发生率的影响.两个台站同时观测到的IPDP事件最大出现率出现在15—18 MLT(磁地方时),结果表明IPDP事件主要由亚暴期间产生的能量离子注入内磁层,西向漂移遇到等离子体层羽状结构(Plume)区的高密度等离子体所激发.  相似文献   
96.
本文根据OMNI、TC-2卫星、LANL系列卫星、Cluster星簇卫星(C1—C4)以及加拿大的8个中高纬地磁台站的观测数据,研究了2005年8月24日强磁暴(SYM-Hmin~ -179 nT)主相期间的强亚暴(ALmin~ -4046 nT)事件特征.该强磁暴在大振幅(IMF Bz min~ -55.57 nT)、短持续时间(~90 min)的行星际磁场条件下产生,有明显的磁暴急始(SSC),强度较大且持续时间较短.发生在磁暴主相期间的亚暴发展的主要特征如下:亚暴增长相期间,C1—C4卫星先后穿越中心等离子体片;亚暴膨胀相触发后,在近地磁尾(X~-6RE)可观测到磁场偶极化现象;等离子体无色散注入区在亚暴onset开始后迅速沿经向扩展,但被限制在有限的经度范围;磁纬60°附近,Pi2地磁脉动振幅超过了100 nT.膨胀相开始后,在中、高磁纬地磁台站可观测到负湾扰,近地磁尾可观测到Pi2空间脉动,中磁尾区域可观测到尾向流、磁重联以及O+/H+数密度比值在亚暴onset之后增大等现象.分析表明该强磁暴主相期间的强亚暴现象发生时序是自内向外:X~-6RE处TC-2观测到磁场偶极化(~09:42:30 UT),同步轨道卫星LANL1994-084观测到等离子体无色散注入(~09:44:30 UT),X~-17.8RE处C1观测到磁场重联(~09:45:30 UT),由此推断该亚暴事件很可能是近地磁尾不稳定性触发产生,其发生区域距离地球很近.  相似文献   
97.
低纬度地区地磁场的短时变化主要由以下电流体系产生:电离层发电机电流(IDC)、对称环电流(SRC)以及由部分环电流和Ⅱ区场向电流及其电离层回路组成的内磁层三维电流体系(PRFI).此外,由Ⅰ区场向电流及其电离层回路组成的电流体系(FACI)所产生的低纬地磁场也是不可忽略的.本文针对1998年5月1-6日的大磁暴,首先利用多个同子午线台站对的数据分离并消去由IDC电流产生的Sq场.然后,通过线性建模分离其他电流体系产生的磁场成分.结果表明:(1)发生在5月1-6日的磁暴可以分为两个过程,PRFI和FACI电流体系在1-3日不明显,在4-5日伴随着亚暴强烈发生.(2)SRC的变化情况在第一阶段同Dst指数相似,在第二阶段明显滞后于Dst指数.(3)在5月4-5日,PRFI在SRC之前增强,随着PRFI和FACI的恢复,SRC开始增强.这一结果为我们了解环电流和场向电流的形成以及它们的关系提供线索.  相似文献   
98.
利用CHAMP卫星磁场数据分析研究了2004年11月7日至8日巨磁暴(DstH和AE指数对比分析得出,早上扇区的大尺度电流片的分布特征更多地受到亚暴活动的影响,而下午扇区的电流片分布则明显反映出磁暴环电流活动的特征.  相似文献   
99.
2007年3月3日位于磁层昏侧THEMIS的5颗卫星、同步轨道晨侧和午前的GOES 3颗卫星和地面地磁台站同时观测到了持续近4 h的Pc5 ULF波.我们用交叉小波相关分析计算脉动的传播速度,用MVA分析求解脉动的传播方向,然后结合两者的计算结果获得了Pc5相速度矢量信息.THEMIS卫星观测到Pc5具有压缩特性,且向阳传播,速度约在6~20 km/s左右,相比于磁层中阿尔芬速度(1000 km/s)较低.这些Pc5 ULF波动可能产生于磁尾或磁层内部不稳定性.GOES 3颗卫星观测到不同情况的Pc5 ULF波,极向模占主要成分,且具有波包结构,具有阿尔芬驻波特性,可能产生于K-H(Kelvin-Helmholtz)不稳定性.地面台站观测到ULF波扰动幅度随纬度升高而增强,Pc5脉动在地理纬度60°附近达到最大值, Dumont durville台站观测到的脉动与THEMIS观测到波形有很好的相似性.  相似文献   
100.
对Ⅱ区场向电流及其伴随的部分环电流和电离层电流组成的内磁层三维电流体系(PRFI电流系)的磁场效应进行了数值计算.这一三维电流体系在中低纬度地面产生的磁场呈现出特殊的纬度分布:X分量几乎不随纬度变化,Y分量随纬度增高近似呈线性变化.这些特征明显不同于对称环电流的磁场分布特征(X∝ cosφ,φ是纬度,Y=0),也不同于DP2、Sq、L等电流体系的磁场分布特征.利用这一特征我们可以从地磁台子午链观测到的磁场扰动中分离出PRFI电流系的贡献.用1989年3月磁暴的实例检验了上述模型,观测结果与理论结果符合得很好.分析结果还表明,最大的Dst指数并不一定对应着最强的对称环电流.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号