全文获取类型
收费全文 | 79篇 |
免费 | 5篇 |
国内免费 | 28篇 |
专业分类
大气科学 | 10篇 |
地球物理 | 9篇 |
地质学 | 75篇 |
海洋学 | 10篇 |
天文学 | 1篇 |
综合类 | 5篇 |
自然地理 | 2篇 |
出版年
2014年 | 1篇 |
2013年 | 2篇 |
2011年 | 1篇 |
2010年 | 5篇 |
2009年 | 6篇 |
2008年 | 11篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 8篇 |
2004年 | 13篇 |
2003年 | 7篇 |
2002年 | 2篇 |
2001年 | 11篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 6篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1960年 | 2篇 |
1959年 | 2篇 |
排序方式: 共有112条查询结果,搜索用时 15 毫秒
81.
Zonal distribution of seepage hydrocarbon-induced altereb carbonates over oil/gas reservoirs is a common phenomenon observed in the field.The authors considered that the continuous production of CO2 within the “alteration chimney ”gives rise to a significant difference in physical and chemical properties between its interior and the surrounding country rocks.And it is this difference that has promoted the erosion and precipitation of carbonates,thus leading to the zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs.This may be a reasonable interpretation of the phenomenon described above. 相似文献
82.
1Introduction p23, the 23-kDa protein originally identified asa component of the complex of heat shock protein 90(Hsp90) with the progesterone receptor (Johnson etal., 1994), is a ubiquitous and highly conservedprotein from yeast to humans (Garcia -Ranea … 相似文献
83.
天然气水合物是在水深大于300—500m的沉积中,在高压低温条件下,当甲烷和其它碳氢化合物气体富集时形成的冰状物质。目前,科学家估算世界上天然气水合物中甲烷的碳含量之差距是很大的(Kvenvolden和Lorenson,2001;Milkov等,2003)。海 相似文献
84.
85.
海底沉积物孔隙水钡循环对天然气渗漏的指示 总被引:1,自引:0,他引:1
冷泉流体的渗漏活动强烈地影响着海底沉积物孔隙水钡循环。冷泉流体中的Ba2+ 向上扩散与孔隙水硫酸盐反应,在硫酸盐—碳氢化合物转化带(SHT)之上沉淀重晶石。随着沉积物的埋藏,先前沉淀的重晶石被埋藏于SHT之下的硫酸盐亏损带,将发生溶解,溶解的钡向上扩散,在SHT之上再次沉淀重晶石。当体系中向上扩散的Ba2+超过埋藏的重晶石中的钡时,在剖面上形成“钡锋”。向上渗漏的碳氢化合物(甲烷为主)通量控制了SHT的深度,二者之间存在很好的地球化学耦合关系,从而,可以用“钡锋”来评价天然气渗漏活动的特征。在总结和分析国际海底冷泉渗漏活动区沉积物孔隙水的甲烷和钡循环的研究进展基础上,综述了海底沉积物孔隙水钡循环对现在和过去天然气渗漏的指示,总结了渗漏成因重晶石的地质和地球化学特征。 相似文献
86.
Abstract: A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced by the fault zone itself, whose fault displacement, depth, net-to-gross-ratio of mudstone, fault plane angle, and fault mechanical properties play important controlling roles. The sealing of hydrocarbon by the fault zone depends on whether the fault zone can form a continuous sealing zone and if the pore throats connecting those fault zones are small enough. The concept of fault zone-sealing potential is proposed here, and a quantitative formula is established by using a great amount of practical statistical data as well as the fuzzy comprehensive evaluation method, which is a comprehensive characterization parameter to judge whether or not fault zones could seal oil hydrocarbon. The greater the value of the fault zone-sealing potential, the better sealed the fault is. For example, with increasing depth, the sealing degree of the Xin 68 Fault in the Dongxin 1 oilfield changes greatly, reflecting the complexity of fault-sealing properties. 相似文献
87.
88.
By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock. 相似文献
89.
WangShangxu LinChangrong 《应用地球物理》2004,1(2):75-82
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir,so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indicates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine facies, delta, or non-marine facies (including fluvial facies, lacustrine facies); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz). 相似文献
90.