首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   964篇
  免费   472篇
  国内免费   11篇
测绘学   565篇
大气科学   27篇
地球物理   569篇
地质学   14篇
海洋学   29篇
天文学   77篇
综合类   125篇
自然地理   41篇
  2024年   18篇
  2023年   48篇
  2022年   48篇
  2021年   59篇
  2020年   48篇
  2019年   66篇
  2018年   64篇
  2017年   69篇
  2016年   67篇
  2015年   67篇
  2014年   88篇
  2013年   78篇
  2012年   74篇
  2011年   81篇
  2010年   60篇
  2009年   61篇
  2008年   55篇
  2007年   38篇
  2006年   26篇
  2005年   33篇
  2004年   14篇
  2003年   25篇
  2002年   21篇
  2001年   21篇
  2000年   14篇
  1999年   11篇
  1998年   7篇
  1997年   10篇
  1996年   13篇
  1995年   15篇
  1994年   20篇
  1993年   15篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   2篇
  1963年   2篇
  1962年   3篇
  1957年   3篇
  1954年   2篇
排序方式: 共有1447条查询结果,搜索用时 265 毫秒
151.
针对地基增强系统(GBAS)中传统电离层异常检测方法无法同时兼顾检测精度与灵敏度的问题,通过构造单通道变步长最小均方(LMS)自适应滤波器以抑制伪码-载波偏离度高频噪声。单通道LMS自适应滤波器是在标准双通道LMS自适应滤波器的基础上,利用被检测信号短时相关性及其量化噪声的非相关性,构造一个采用被检测信号延时量作为参考输入的自适应滤波器,同时对Sigmoid函数进行改进,使得自适应滤波器在前期收敛速度快,且待滤波器收敛后保持较高稳定性。实验结果表明,在相同卫星仰角与电离层时间梯度值下,采用LMS自适应滤波器后电离层异常检测时间缩短,且当电离层时间梯度较小时,该方法也能够实现异常检测,验证了其有效性。  相似文献   
152.
利用空间几何原理推导三频消电离层参数和最小噪声直线空间表达式,采用5个静态观测站和1组实测跑车北斗三频观测数据,对比分析北斗三频消电离层模型与双频消电离层模型PPP精度和收敛速度。结果表明,静态条件下,三频PPP的位置误差为3.75 cm,标准差为2.06 cm,收敛时间为109.6 min,较双频PPP性能分别提升22.3%、19.8%、22.1%;动态条件下,三频PPP的位置误差为15.21 cm,标准差为12.89 cm,较双频PPP性能分别提升42.4%和26.8%,且收敛速度也更优。  相似文献   
153.
在精密单点定位技术中,外部提供给接收机更多的先验信息能使其定位精度和实时性得到提高。依靠增强站网内插出流动站的电离层延迟进行非差非组合精密单点定位时,其提供的改正达到精度要求势必使待估参数减少,模型强度变强,定位精度高。本文对比了内插电离层改正的精度,探讨了内插模型,提出了平面双样条内插模型。实验结果表明:在内插模型合适的情况下,电离层延迟精度可达到精密单点定位的要求。   相似文献   
154.
利用中国南部地区七个站点的2004年GPS观测数据,对赤道异常中国扇区电离层TEC的北驼峰位置和时间以及驼峰北侧电离层梯度进行了分析,结果表明:驼峰位置随季节改变,介于地理北纬17.5°~22.5°之间,冬季月份相对为低,分季月份相对为高,年平均位置约在北纬20°附近;驼峰出现时间也随季节在地方时13~16 h之间变化,冬季月份相对为早,夏季月份相对为晚,其出现时间的年平均值前者在地方时14 h前后,后者约在地方时15~16 h之间。驼峰区电离层TEC存在纬向梯度,其梯度也随地方时和季节而改变,夜侧梯度在地方时4.5 h前后为极小,且在不同季节其变化幅度不大,而日侧梯度在地方时13.5~16.5 h时段出现极大,且在不同季节差异较大,分季要高于冬季和夏季。   相似文献   
155.
GPS/BDS中长距离RTK定位因为电离层和对流层残余误差的影响,其性能相对于常规RTK有所降低。将GPS/BDS卫星双差电离层误差和对流层误差作为参数,采用卡尔曼滤波进行实时估计。为了验证算法的有效性,利用武汉地区103 km静态基线24 h双频观测数据,分析了GPS和BDS单系统以及二者组合双系统中长距离RTK定位性能。实验结果表明,精确估计的双差电离层残余误差达到米级、对流层误差达到分米级;经过改正后,GPS/BDS单系统的定位精度在1 cm左右,组合双系统则实现了中长距离基线毫米级的高精度定位。  相似文献   
156.
讨论了GPS精密单点定位的数学模型。提出了一种改进的GPS精密单点定位算法,该算法是把电离层延迟分为一阶电离层延迟和二阶电离层延迟的方法。分别对各阶电离层进行研究:一阶电离层采用线性组合的方式消除,二阶电离层延迟采用模型估计方法进行消除,最终达到消除电离层影响的目的。最后把该算法应用于GPS/GLONASS组合精密单点定位中,分别从E、N、U 3个定位方向上比较了GPS和GPS/GLONASS组合精密单点定位的定位结果,计算结果表明,该算法在一定程度上提高了定位的精度。较单系统GPS精密单点定位,它能够加快定位的收敛速度,保证定位的连续性。  相似文献   
157.
不同NeQuick电离层模型参数的应用精度分析   总被引:3,自引:2,他引:1  
Galileo采用NeQuick作为全球广播电离层模型,其实际应用中以有效电离水平因子Az代替太阳活动指数作为NeQuick的输入参数,并利用二次多项式拟合得到广播星历中播发的3个电离层参数。本文在总结和讨论NeQuick模型参数估计方法及其变化特征的基础上,分别以全球电离层格网、GPS基准站及JASON-2测高卫星提供的电离层TEC为参考,分析不同NeQuick模型参数(包括以太阳活动参数F10.7为输入的NeQuick2、以本文解算参数为输入的NeQuickC和以Galileo广播电离层参数为输入的NeQuickG)在全球大陆及海洋地区的应用精度,并与GPS广播的Klobuchar模型对比。结果表明,NeQuickG在全球范围内的修正精度为54.2%~65.8%,NeQuickC的修正精度为71.1%~74.2%,NeQuick2的修正精度与NeQuickG相当,略优于GPS广播星历中播发的Klobuchar模型。  相似文献   
158.
由于BDS卫星的星座特性及卫星的轨道和钟差的精度影响,使得传统消电离层组合精密单点定位(PPP)的初始化时间较长。针对上述问题,文中对附加电离层约束的非组合精密单点定位算法进行研究。首先介绍非组合PPP算法,分析其与传统PPP的差异;其次分别利用CODE电离层格网产品,以反距离加权算法计算的站星电离层延迟、低阶球谐函数建立的区域电离层产品等作为先验信息对非组合PPP进行约束。通过MGEX观测网实测数据静态和仿动态计算表明,相比传统消电离层组合PPP,附加电离层约束的非组合PPP能够有效缩短初始化时间,同时能够获得高精度的定位结果。  相似文献   
159.
太阳活动高峰年山东区域电离层时空变化研究   总被引:1,自引:1,他引:0  
2012年为太阳活动高峰年份,为了研究太阳活动高年区域电离层的变化特征,该文选取了山东区域内的SDCORS站点,构建了山东区域垂直电子含量(VTEC)球谐格网模型,对该年山东区域电离层时空变化规律进行分析。实验研究表明,在空间变化上山东区域电离层表现出较强的纬度相关性,出现了明显的分层现象。同时给出了山东电离层在时间上呈现出的时段变化、日变化、月变化、季节变化,发现VTEC受太阳活动影响较大,除了存在明显的单峰和双峰结构外,该年还发生了半年度异常现象。  相似文献   
160.
基于几何无关(geometry-free,GF)和电离层无关(ionosphere-free,IF)的三频原始载波线性组合观测量,由于消除了一阶电离层延迟项以及同卫星与测站间几何距离相关误差项的影响,可有效应用于中长基线模糊度解算。对适用于北斗卫星导航系统(BDS)中长基线模糊度解算的GF和IF线性组合观测量进行了研究和优化,通过对载波观测量与伪距观测量组合,得到噪声最小且基于GF和IF的宽巷组合观测量,然后将模糊度得到固定的两个载波组合观测量与原始载波观测量进行最优线性组合,得到具有最低噪声的基于GF和IF的窄巷组合观测量。该方法充分利用了所有载波及伪距观测量信息,并根据其噪声水平进行了加权优化,公式推导具有普遍性和代表性。通过三频实测基线数据进行了论证分析。结果表明,经过一段时间的平滑之后,宽巷和窄巷模糊度浮点解的偏差能收敛到0.5周以内,从而实现模糊度的快速准确固定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号