首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   16篇
  国内免费   52篇
大气科学   1篇
地球物理   17篇
地质学   145篇
海洋学   3篇
自然地理   3篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   8篇
  2001年   20篇
  2000年   4篇
  1999年   5篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
1.
采集了4个不同地区花岗岩石英、热液脉石英,分析其中包裹体分子水与结构羟基水的含量、包裹体分子水的δDinclusion、结构羟基水的δDOH,计算了结构羟基水-包裹体分子水之间的D/H分馏系数αOH-inclusion。考查了混合水(结构羟基水_包裹体分子水)δDwhole-water与单独包裹体水δDinclusion之间的差别,分析了这种差别与分馏系数αOH-inclusion的关系。结果表明:花岗岩样品中两种水之间的分馏系数小,分馏程度大,在常规分析中,若采用测定混合水δDwhole-water值代表实际流体(包裹体水)δDnclusion值时,二者间有较大的差异。热液石英脉样品总体来说分馏系数接近于1,分馏程度小,常规分析中引起的二者之间差异小。常规的分析方法用于分馏程度小的热液脉石英是可行的,但进行花岗岩石英水的氢同位素分析时有必要区分出包裹体水与羟基水。  相似文献   
2.
3.
郯庐断裂带呈北北东—北东向纵贯东北、华北、华中三大地洼区。从地壳发展史及现阶段大地构造性质看,它是在地洼阶段继承历代大地构造发展阶段的构造,进一步发展而成的一条大陆型裂谷带。沿郯庐断裂又有许多次生的断裂,断裂附近有许多温泉,这些温泉有规律地排列在主断裂两侧,与主要构造线相一致,温泉一般出露在构造破碎带上,并覆盖有厚约10m左右的第四纪沉积物。为了探讨温泉水的补给源,笔者沿郯庐断裂北段的安徽、山东、辽宁采集了一些温泉水样品分析了氧和氢同位素组成(表1)。从表1可看出,δ~(18)O值-8.13‰~10.94‰,δD值-55.6‰~-76.98‰,前者的变化范围在±1‰,δD值的变化范围仅±10‰。为了进一步说明温泉水的补给源,笔者同时对该地区的井水作了氧和氢同位素分析(表2)。  相似文献   
4.
运用离子探针技术测定了河北汉诺坝新生代玄武岩中3个单斜辉石巨晶的氢同位素组成,结果显示同一颗粒内部表现出微尺度的不均一性,2mm范围内δD的变化达到60‰。δD和氢含量之间不存在同步的变化,巨晶内部的化学成分均一,因此我们认为巨晶的氢同位素不均一性继续自母岩浆。母岩浆的氢同位素变化可能是去气过程中气相与熔体之间的分馏引起的。单斜辉石巨晶形成后很短的时间内即被寄主岩浆带至地表并经历了快速淬火。  相似文献   
5.
伟晶岩绿柱石矿物学及其通道水氢同位素研究进展   总被引:4,自引:0,他引:4  
张辉  刘丛强  马英军 《矿物学报》1999,19(3):370-378
自然界绿柱石存在三个类质同象系列,即“八面体”绿柱石(c/a=0.991 ̄0.996),“正常”绿柱石和“四面体”绿柱石。绿柱石矿物精细结构研究表明,二价离子置换八面体中Al,Li置换四面体中Be,而碱离子被绿柱石通道所容纳,用于补偿低价阳离子置换Al八面体和Be四面体引起的电价不足。伟晶岩绿柱石通常含有〉1.6wt%的通道水,而包裹体中流体仅为0.15wt%左右。室温下绿柱石通道中存在1型和Ⅱ  相似文献   
6.
段毅  吴应忠  吴保祥  孙涛 《地质学报》2018,92(7):1541-1550
青海湖是我国最大的内陆咸水湖泊。本文应用GC-MS和GC-TC-IRMS同位素分析技术,对青海湖水生生物和周围地区陆生生物中正构烷烃及其氢同位素进行了分析,研究了生物中正构烷烃及其同位素组成。结果显示了不同生物中正构烷烃碳数分布范围在C1 5~C33之间,呈单峰型分布;主峰碳数是水生生物(除海韭菜外)相对较低,主要为C23和C25,陆生木本植物次之,为C27;陆生草本植物较高,为C27和C29;CPI值分布在4.0~29.7之间;ACL值为26.0~29.6,分布与植物类型有关。青海湖水生生物中正构烷烃氢同位素组成分布在-209.8‰~-85.6‰之间,平均值为-169.2‰~-121.2‰;陆生植物的正构烷烃δD值为-196.7‰~-84.3‰之间,平均值为-173.0‰~-108.6‰。青海湖不同水生生物和不同陆生生物之间的正构烷烃氢同位素组成差别显著。研究发现,湖泊的含盐量对水生植物的正构烷烃氢同位素具有显著影响,环境湿度和降水量明显影响了陆生植物的正构烷烃氢同位素组成;植物的正构烷烃平均氢同位素组成随着其ACL值增加,具有变轻的趋势;不同种类植物的正构烷烃合成期间具有不同的氢同位素分馏效应,与陆生植物相比较,水生植物的正构烷烃相对于环境水更富集轻氢同位素,并且随着ACL值增加,环境水和正构烷烃之间的氢同位素分馏增大。  相似文献   
7.
河北平原地下水氘过量参数特征   总被引:11,自引:0,他引:11  
氘过量参数是由Dansg aar d提出的一个新概念,它被定义为:d= δD-8δ18O。河北平原地下水氘过量参数有三个特征: ( 1)地下热水的氢和氧同位素组成显示出热交换的态势,d 值随地下水年龄增大而减少。( 2)在同一地区,d 值随着地下水埋深加大而增大。( 3)在同一含水层内,沿着地下水的路径,从补给区到承压区, d 值随着地下水年龄增大而增大。我们认为, d 值虽然是地下水年龄的函数,但最好和3 H、3H- 3He、14 C、36 Cl和4 He测年结果结合使用。   相似文献   
8.
塔里木盆地东部地区天然气地球化学特征及成因探讨(之二)   总被引:17,自引:2,他引:17  
天然气的组分和碳、氢同位素组成特征研究表明塔里木盆地已发现的天然气均为热解气。通过气源对比可知,该盆地东部地区的天然气主要有两种类型 :1)是来自震旦纪到下古生界海相腐泥型母质的油型气,其甲烷、乙烷、丙烷δ13C值,分别为-44.5‰~-33.8‰、- 42‰~-2 8.1‰和-35.4‰~-2 8.4‰,其甲烷的氢同位素组成大于- 2 0 0‰;2 )是产自中生代陆相腐殖型源岩的煤型气,其甲烷、乙烷、丙烷的δ13C值分别为-40.5‰~-33.1‰、- 2 9.7‰~-2 1.3‰和-2 6.3‰~-2 0.3‰,其甲烷的氢同位素组成小于-2 0 0‰。将天然气的地化特征与地质背景相结合判断可知,在塔北隆起地区一些天然气藏是由成熟 (高成熟 )阶段的油型气与过成熟阶段的油型气混合形成,另一些天然气藏是由成熟阶段的油型气和成熟阶段的煤型气混合形成.  相似文献   
9.
植物正构烷烃及其单体氢同位素在古环境研究中的应用   总被引:5,自引:1,他引:4  
正构烷烃是植物类脂的重要组成部分,主要用来维持叶片表面的水分平衡,其平均碳链长度(ACL)作为植物对水分胁迫程度的生理性反映,与植物进化程度存在表观上的联系。高等植物来源烷烃的ACL高于低等植物和水生藻类,裸子植物高于被子植物,C4植物高于C3植物,因此植物正构烷烃具备粗略的植物分类学意义,并在古环境研究中被广泛应用。在河口和海洋沉积物中主要用来判断水生低等植物和陆地高等植物的相对贡献,在古土壤中则用来区分草本/木本植物的消长变化。植物烷烃中的氢元素主要来自光合作用时吸收的环境水,其δD主要受环境条件和生物化学过程影响,但环境条件、气候状况和植被类型的影响可以在很大程度上相互抵消,使烷烃δD具有记录大气降水δD的潜力,从而可以用来重建大气降水δD并反演气候变化。  相似文献   
10.
为探究青藏高原全新世夏季风最强、气候最湿润阶段这一争论议题,本文应用气相色谱仪(GC-FID)和气相色谱-高温热转变-同位素比值质谱仪(GC-TC-IRMS),分析了兹格塘错沉积岩心正构烷烃及其氢同位素特征。结果表明,兹格塘错岩心中主要以n-C15/16/17为主峰碳的短链正构烷烃占据主导地位,指示了湖泊自生浮游藻类与菌类等低等生物对湖泊沉积岩心中的有机质贡献高于大型水生植物和陆生高等植物表皮蜡质所产生的有机质。基于正构烷烃参数(如:碳优势指数CPI值和平均碳链长度ACL值)及单体氢同位素比值在时间序列上的变化特征,指出兹格塘错流域的气候湿润期处于中全新世(5.8~2.7 cal ka BP),明显滞后于早全新世的太阳辐射最强期,这主要归结于该流域冰川融水补给的匮乏及局地环流的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号