全文获取类型
收费全文 | 1246篇 |
免费 | 261篇 |
国内免费 | 133篇 |
专业分类
测绘学 | 16篇 |
大气科学 | 131篇 |
地球物理 | 89篇 |
地质学 | 918篇 |
海洋学 | 82篇 |
综合类 | 36篇 |
自然地理 | 368篇 |
出版年
2024年 | 9篇 |
2023年 | 42篇 |
2022年 | 62篇 |
2021年 | 67篇 |
2020年 | 42篇 |
2019年 | 57篇 |
2018年 | 47篇 |
2017年 | 48篇 |
2016年 | 51篇 |
2015年 | 49篇 |
2014年 | 83篇 |
2013年 | 51篇 |
2012年 | 70篇 |
2011年 | 71篇 |
2010年 | 66篇 |
2009年 | 80篇 |
2008年 | 102篇 |
2007年 | 79篇 |
2006年 | 62篇 |
2005年 | 40篇 |
2004年 | 40篇 |
2003年 | 62篇 |
2002年 | 37篇 |
2001年 | 48篇 |
2000年 | 43篇 |
1999年 | 30篇 |
1998年 | 13篇 |
1997年 | 32篇 |
1996年 | 16篇 |
1995年 | 24篇 |
1994年 | 14篇 |
1993年 | 24篇 |
1992年 | 23篇 |
1991年 | 16篇 |
1990年 | 21篇 |
1989年 | 14篇 |
1988年 | 4篇 |
1984年 | 1篇 |
排序方式: 共有1640条查询结果,搜索用时 10 毫秒
991.
气候变化和人类活动对鄱阳湖流域赣江径流影响的定量分析 总被引:3,自引:2,他引:3
气候变化和人类活动对流域径流影响的定量研究是当前研究的热点,赣江作为鄱阳湖流域最大的子流域,径流变化对鄱阳湖湿地水生态系统具有重要的影响.利用Mann-Kendall突变检验分析了赣江流域径流1955—2010年间演变趋势,再分别应用统计方法和IHACRES集总式模型分析气候要素和人类活动对径流的影响.研究表明IHACRES能够较好地模拟赣江流域径流,适用于中亚热带湿润季风气候区.Mann-Kendall突变检验表明赣江流域径流在1979年发生突变,可划分为1955—1979年和1980—2010年两个时段.降水是影响赣江流域径流年际变化的主要因素,而土地利用等人类活动的影响并不明显.水库建设显著影响赣江径流的季节分配,1980—2010年间人类活动影响更加显著,其中45%的年份秋季径流增加50%以上,26%的年份秋季径流增加超过100%,其中1989年的秋季径流增加幅度达到320%. 相似文献
992.
基于SWAT模型的乌裕尔河流域气候变化的水文响应 总被引:5,自引:1,他引:5
乌裕尔河流域是气候变化的敏感区,其径流量是扎龙湿地的重要补给水源,探讨气候变化情景下乌裕尔河流域径流量的变化对区域社会经济发展和扎龙湿地生态环境保护具有重要的现实意义.本文利用SWAT模型对乌裕尔河流域进行径流模拟,并分析未来气候变化情景下河流径流量的变化.结果表明:SWAT模型可以较好地模拟乌裕尔河流域的径流量变化过程,尤其是产流量大的站点,模拟效率较高;气候变化对径流量影响较为显著.未来气候变化情景下,流域径流量随着时间的推移不断减少,而且不同水文站径流量减少幅度不同. 相似文献
993.
雨量站网布设会影响径流模拟精度,研究不同雨量站密度和空间分布的径流响应规律对提高径流模拟精度和减小不确定性具有重要意义。应用新安江模型和HBV(Hydrologiska Fyrans Vattenbalans)模型,以湘江流域为研究对象,采用贝叶斯方法比较分析在不同雨量站密度及空间分布下径流模拟的不确定性。结果表明:增加雨量站密度可以降低面雨量的估计误差,使模型在不同的雨量站空间分布下具有较高的模拟精度;通过优化雨量站空间分布,可以减小雨量站网布设导致的模型不确定性,从而提高径流模拟精度;在相同的降雨输入和参数采样方法下,新安江模型和HBV模型对降雨输入导致的不确定性响应规律具有相似性,但是本研究结果显示在湘江流域新安江模型的模拟精度更高,而HBV模型的不确定性更大。 相似文献
994.
长江口海域浮游植物分布及其与径流的关系 总被引:48,自引:9,他引:48
利用 2 0 0 1— 2 0 0 2年 4个季度月航次调查资料 ,研究了长江口海域浮游植物的分布及其与长江径流的关系 ,共鉴定浮游植物 1 5 4种 (含变种和变型 ) ,其中属硅藻类的有 1 1 3种 ,甲藻类 36种 ,近岸低盐性的中肋骨条藻 (Skeletonemacostatum)是最重要的优势种。夏季浮游植物密集区位于长江口海域的北部及靠近浙江近海的上升流区 ,春季和秋季密集区出现在调查区的南部。浮游植物数量高峰出现在夏季 (平均为 9 2 7× 1 0 6 个 /m3) ;冬季 (枯水期 )数量最少(平均为 2 91× 1 0 5 个 /m3) ,且分布相对较均匀 ,显示出该海域浮游植物种类组成与数量的季节变化同长江径流量有明显的关系。由于大量营养盐被长江径流携带入海 ,造成河口区严重富营养化 ,这为赤潮生物大量孳生提供了适宜的环境条件 ,长江口海域已成为我国沿海赤潮多发区之一。 相似文献
995.
基于Budyko水热耦合平衡假设,推导了年径流变化的计算公式,分析了长江流域多年平均潜在蒸发量、降水量、干旱指数和敏感性参数的空间变化规律。选用BCC-CSM1-1全球气候模式和RCP4.5排放情景,把未来气候要素预估值与LS-SVM统计降尺度方法相耦合,预测长江流域未来的气温、降水和径流变化情况。采用乌江和汉江流域的长期径流观测资料,分析验证了基于Budyko公式计算年径流变化的可靠性。结果表明:降水量变化是影响径流量变化的主导因素;长江各子流域未来径流相对变化增减不一,最大变幅10%左右;在未来2020s(2010—2039年)、2050s(2040—2069年)和2080s(2070—2099年)3个时期内,长江南北两岸流域的径流将出现"南减北增"现象,北岸径流变化增幅逐渐升高,南岸径流变化减幅逐渐降低。 相似文献
996.
以富春江水库控制流域为研究区域,利用中国大气同化驱动数据集(CMADS V1.1)驱动SWAT水文模型,对富春江水库控制流域进行了逐日径流模拟,探讨了流域2008-2016年径流变化及水量平衡过程。结果表明:CMADS V1.1数据集驱动SWAT模型对研究区域的径流变化具有较好的模拟效果,在验证期,逐日模拟的效率系数大于0.70,决定系数大于0.75,达到了模型评价标准。在流域水量平衡各项中,地表径流和蒸散发为主要的输出项,分别占降水量的57.2%和36.2%,其中蒸散发量年际变化较为平稳。降水量、地表径流量、土壤对地下水补给、地下侧流量、蒸散发量最大值均出现在6月,最小值均出现在1月。流域径流量以地表径流为主,其在各个月份与月降水变化趋势基本一致。而基流量较小,且各月基流量对降水量的响应并不显著。 相似文献
997.
998.
目前径流变化相关研究较少涉及径流的不同组分。利用湖南省澧水流域4个水文站点长序列观测资料,不仅分析了2007-2011年相对于1985年以前径流总量及其历时曲线的变化,也分析了地表径流和基流及其历时曲线的变化。与1985年以前比,流域年降雨量保持不变,最显著的变化为森林覆盖率的增加和大量水库的修建。这些人类活动没有造成年径流总量、年基流量和年地表径流量的显著变化,但在日时间尺度上对径流过程产生了重要影响。地表径流和地下径流对人类活动存在差异性响应,2007年以后地表径流在洪峰期流量变小而其他时段变大,而地下径流汇水受人类活动影响较小,基流流量除枯水期外与1985年以前基本一致。本文所揭示的规律可能在中国南方具有一定的代表性。 相似文献
999.
阿克苏河(中吉国际河流)现已成为塔里木河的主河源,它对塔里木河干流的形成、发展和演变过程起着决定性作用.随着国家西部开发战略--塔里木河流域综合治理的深入开展和实施,阿克苏河流域的水文特征、水文预报等研究成为热点.特别是在干旱区中纬度高海拔流域的河流中,阿克苏河是以冰雪融水补充为主河流的典型代表,对阿克苏河流域径流进行预报研究具有理论和现实意义.鉴于此:(i)结合干旱区无资料或少资料的现状,利用现有的水文气象资料,尝试并构建日尺度水文预报方法;(ii)采用高空气温代替地面实测气温与日径流相关关系法、AR(p)预报模型、气温降雨修正的AR(p)预报模型和NAM降雨径流模型,对阿克苏流域的两大支流进行日径流模拟和预报;(iii)对4种方法模拟结果进行对比分析,表明利用气温和降雨修正后的AR(p)模型所用水文气象资料少、应用简便、预报精度较高、比较适用于资料较缺乏的阿克苏流域的短期径流预报.该研究以日尺度进行水文预报,在该流域尚属首次,不仅为阿克苏河、塔里木河的水文预报、洪水防治和全流域的水量调度等提供基础,也为干旱区其他流域的水文预报提供了参考方法. 相似文献
1000.
西江流域径流与气象要素多时间尺度关联性研究 总被引:2,自引:0,他引:2
使用水文统计和交叉小波方法对西江流域1961~2005年径流变化特征及其与气象要素的多时间尺度的关联性进行分析。结果表明,径流量总体呈现减少的变化趋势,可能是人类活动引起流域内蒸发和入渗增加,使径流对降水的响应减弱造成的,径流丰枯变化基本与降水的波动相一致。气温对径流的显著作用主要集中在1990~2000年3~5 a周期上,径流对气温变化的响应时间为6~12个月;降水与径流在大部分时频域中呈同相相位变化,其相互作用主要集中在1992~2003年3~4 a和1980~2000年11~12 a周期上;大气环流变化对径流的影响主要集中在1965~1975年2~3 a及1993~2000年3~5 a周期上,对径流的影响可能是通过对区域降水影响实现的,径流对前一次环流变异响应时间为6~12个月,对后一次响应时间较快,时间的差异可能是下垫面的改变引起流域产汇流机制变化造成的。 相似文献