全文获取类型
收费全文 | 179篇 |
免费 | 45篇 |
国内免费 | 58篇 |
专业分类
测绘学 | 41篇 |
大气科学 | 11篇 |
地球物理 | 78篇 |
地质学 | 118篇 |
海洋学 | 17篇 |
天文学 | 3篇 |
综合类 | 9篇 |
自然地理 | 5篇 |
出版年
2024年 | 3篇 |
2023年 | 7篇 |
2022年 | 7篇 |
2021年 | 7篇 |
2020年 | 5篇 |
2019年 | 14篇 |
2018年 | 11篇 |
2017年 | 8篇 |
2016年 | 5篇 |
2015年 | 11篇 |
2014年 | 8篇 |
2013年 | 15篇 |
2012年 | 15篇 |
2011年 | 20篇 |
2010年 | 18篇 |
2009年 | 8篇 |
2008年 | 7篇 |
2007年 | 15篇 |
2006年 | 7篇 |
2005年 | 8篇 |
2004年 | 14篇 |
2003年 | 13篇 |
2002年 | 7篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1992年 | 1篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1982年 | 6篇 |
1980年 | 4篇 |
排序方式: 共有282条查询结果,搜索用时 10 毫秒
201.
精确测定圆形物体中心位置的方法 总被引:2,自引:0,他引:2
针对圆形物体中心位置的精确测定,提出了基于全站仪或光电测距仪的两种方法:坐标法和方向距离法,并推导出了这两种方法相应的关于圆形物体中心坐标的计算公式。 相似文献
202.
《测绘科学技术学报》2013,(5)
传统的灰度编码标志依据自身的几何及结构关系来识别编码,往往由于倾角、畸变大而识别错误;而彩色编码标志虽然增加了颜色信息,但是结构又相对复杂,也存在算法复杂、识别率较低的问题。针对上述问题,本文将标志中的颜色信息与几何信息相结合,设计了一套简单、实用且可靠性更好的彩色点分布型编码标志。该编码标志利用标志点的颜色信息能够有效简化编码标志的解码步骤,提高标志识别效率,并且能够增加编码数目。实验结果表明,该方法实现容易、识别率高,具有一定的实用价值。 相似文献
203.
204.
205.
本文介绍了一种全自动大地电磁测深仪。仪器的研制工作是在法国地球物理研究中心G.Clerc博士领导下进行的。仪器的主要特点是采用CMOS微机自动操作,从而使之功耗低,自动化程度高和轻便灵活。这是新近发展的一种新型物探仪器设备。 本文讨论了该系统的基本原理、测量特点、测量灵敏度和噪声情况等。同时,也简要地讨论了信号的处理和控制等问题。 相似文献
206.
207.
应变软化岩体分析原理及其应用 总被引:2,自引:0,他引:2
应变软化是指应力-应变曲线中轴向应力随应变的增加而减小的现象,许多种类的岩土介质在工程扰动的作用下呈现应变软化的行为。在分析应变软化问题时,其应力-应变关系式中的切线刚度矩阵是非正定的,由此导致计算求解的困难。将岩体应变软化过程简化为一系列脆塑性过程,于是应变软化问题的求解归结为一系列脆塑性过程的分析。基于经典弹塑性力学理论,提出了应变软化过程模拟方法及其相应的有限元求解过程,编制了计算程序,研究了应变软化本构模型中不同强度弱化速率对圆形洞室围岩塑形区分布的影响,进一步分析了应变软化模型对应的隧道径向变形沿洞轴方向的分布特征,并与已有监测数据得到的分布规律进行了对比。初步的研究结果表明,应变软化模型得到的计算结果是比较合理的 相似文献
208.
角点是一种很重要的特征,在摄影测量中有广泛的应用。针对角点检测经典算法中SUSAN算法的特点,对其提出了一些改进方法,使其对角点检测的精度和敏感度有所提高。 相似文献
209.
利用FLAC模拟了不同水平方向压力(小于竖直方向压力)及岩石峰后不同脆性条件下的圆形巷道破坏过程。岩石服从莫尔-库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化-理想塑性行为。监测了模型中第1象限对角线上的单元环向应力分布及演化规律。根据徐林生和王兰生提出的环向应力岩爆判据,判断模型中各单元是否发生岩爆。模拟结果表明:当竖直方向压力一定时,随着水平方向压力的增加,V形坑的顶点和巷道中心的连线与模型水平轴的夹角,由小于45°向接近45°发展;同时,巷道围岩中发生破坏的单元数及发生岩爆的单元数均增加,环向应力的峰值增大。随着岩石峰后脆性的增强,剪切带趋于明显,容易汇合形成V形坑;同时,巷道围岩中发生破坏的单元数及发生岩爆的单元数均增加,环向应力的峰值向围岩内部移动。 相似文献
210.
本文应用微扰法求出了感应测井视电导率的各次修正项,证明了各次修正项之和等于视电导率的真实值。用一个特例说明了理论的正确性。与每一次修正项相应,有一个同次的几何因子,其中一次几何因子在特定条件下与Doll的几何因子一致。 相似文献