首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   24篇
测绘学   5篇
大气科学   27篇
地球物理   2篇
地质学   10篇
海洋学   2篇
综合类   1篇
自然地理   16篇
  2023年   6篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   8篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  1957年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
41.
亚澳“大陆桥”对流影响东亚夏季风建立的可能机制   总被引:7,自引:0,他引:7  
亚澳“大陆桥”是北半球春季亚洲季风区对流最活跃的地区, 对流的建立和推进与东亚夏季风建立关系密切. 早在4月中旬, 中南半岛即有对流出现, 对季风环流演变有重要影响. 4月中旬以前, 中南半岛和印度半岛对大气的加热均以感热为主, 视加热率随高度递减. 之后中南半岛由于对流建立而转为潜热加热, 对流层中低层视加热率随高度递增. 这种加热率的垂直分布以及与印度半岛加热之间的差异, 是导致副高带在孟加拉湾上空断裂的关键. 中南半岛上空加热率垂直梯度的变化超前于孟加拉湾涡度的变化, 是上述机制的有力证据. 副高带断裂后, 中南半岛及附近地区对流进一步加强. 此后,对流加热、副高东撤和季风推进之间存在一种正反馈关系, 是夏季风和对流自中南半岛推进至南海地区的一种可能机制.  相似文献   
42.
中南半岛地区生物物质燃烧活动使其成为东南亚烟雾气溶胶的高值区,排放的烟雾可以传播到南海海域,影响当地层积云的微观特性和降水活动,进而对气候产生影响。本文利用2007—2019年CALIPSO和CloudSat卫星数据筛选了190个烟雾气溶胶与层积云混合的个例,其中中南半岛等陆地上空(代表陆地)的烟雾混合层积云为88个,南海海域(代表海洋)的烟雾混合层积云为102个。基于个例的研究发现:相对于海洋上的烟雾混合层积云,陆地上的烟雾混合层积云中云的液态粒子数浓度(Number concentration of liquid water drops, LNC)、液态粒子有效半径(Geometric mean radius of liquid water drops, LER)和液态水含量(Liquid water content, LWC)的值都更高。与清洁层积云相比,烟雾气溶胶主要通过半直接效应影响海洋上的层积云,而主要作为云凝结核(Cloud condensation nuclei, CCN)通过间接效应影响陆地上的层积云。当气溶胶光学厚度(Aerosol optical depth, A...  相似文献   
43.
缅甸地处中南半岛,背靠中国大西南,是中南半岛国土面积最大的国家。缅甸资源丰富但却是世界上最不发达的国家之一,是一个典型的发展中国家。缅甸还是一个军人执政的国家,从1962年3月至今,军人已在缅甸连续执政45年多,成为二战后世界上执政时间最长的军人政权。缅甸政府2005年11月突然宣布首都由仰光迁至内地的彬马那,并将新首都命名为内比都,缅甸为何突然迁都?现在缅甸新首都又发展的怎么样呢?  相似文献   
44.
利用1979—2008年NCEP/NCAR逐日再分析资料、全国753个测站的逐日降水资料和向外长波辐射(OLR)资料讨论了4—5月南亚高压在中南半岛上空建立的早晚与后期亚洲热带夏季风的建立及中国中东部夏季降水的关系。发现南亚高压建立偏早(晚)年,亚洲热带地区纬向风垂直切变转向和对流爆发早(晚),对流层低层赤道印度洋地区为反气旋式(气旋式)距平环流。相应地,亚洲热带夏季风建立早(晚)。此外,南亚高压建立早晚年,夏季6—8月期间亚洲区域的大气环流形势及水汽输送状况也存在显著差异:偏早(晚)年,南亚高压和西太副高偏弱(强),中高纬环流形势有(不)利于冷空气南下,长江以南地区上升运动偏强(弱),长江以北地区则上升运动偏弱(强),我国中东部至西太平洋地区为气旋式(反气旋式)水汽通量距平环流控制,导致中国中东部夏季降水在南亚高压建立早晚年大致呈现反相分布。因此南亚高压在中南半岛上空建立的早晚可以作为高层先兆信号,对后期亚洲热带夏季风的建立及中国中东部夏季降水分布起到较好的指示作用。   相似文献   
45.
苏门答腊地区对流活动及其与南海夏季风建立的关系   总被引:16,自引:1,他引:16  
使用日本气象厅提供的1980-1997年TBB资料和NCEP/NCAR 40a逐日再分析资料,分析了苏门答腊地区对流活动特征及其与南海夏季风建立的关系,发现南海夏季风的建立与冬季位于苏门答腊的对流中心由冬入夏沿“大陆桥”和中南半岛的系统性移动有密切联系。苏门答腊地区对流沿“大陆桥”移动加快是一个先兆信号,正是对流移动的突然加速,对随后中南半岛对流增强有直接影响;中南半岛地区对流爆发引起副热带高压带在该地区断裂从而导致了南海地区对流活跃和夏季风的建立。南海夏季风爆发之前,南海地区与苏门答腊地区的对流呈偶极型分布;南海地区和苏门答腊南部地区的对流变化几乎呈反相关关系,南海夏季风爆发之前,苏门答腊南部地区对流旺盛;南海地区对流增强期间,苏门答腊南部地区对流减弱。由此可以把南海地区与苏门答腊南部TBB之差小于等于5K(并维持1候)的开始日期作为南海夏季风爆发的指标之一。  相似文献   
46.
利用NCEP/NCAR再分析资料及NOAA的OLR资料,研究了春季南亚高压在中南半岛上空建立与500hPa副高在孟加拉湾上空断裂的关系。结果表明,南亚高压建立之前,对流从“海洋大陆”向北推进,首先在中南半岛建立;而孟加拉湾地区由于青藏高原感热作用在对流层中低层形成一个反Hadley环流型的局地经圈环流,15°N附近500—700hPa有下沉运动中心,它抑制了孟加拉湾对流的建立,也不利于500hPa副高带断裂。南亚高压在中南半岛建立之后,位于高压中心西南侧的孟加拉湾上空出现一个强的辐散中心,孟加拉湾地区15°N附近的下沉运动消失,对流发展起来,降水量增加并释放大量潜热,非绝热加热中心位于500hPa,此时副高脊线断裂。因此,高层南亚高压建立所产生的辐散运动很可能对孟加拉湾上空500hPa副高带断裂及对流建立起到了触发作用。  相似文献   
47.
低空急流对广西热带气旋特大暴雨的影响及概念模式   总被引:5,自引:0,他引:5  
利用ncep再分析资料,对1990~2003年期间,广西14次热带气旋特大暴雨过程进行850hPa低空急流的合成分析,结果指出:广西热带气旋特大暴雨的产生伴随着中南半岛西南急流的增强,西南急流是暴雨增幅的主要水汽和能量输送系统。另外,结合大尺度环流系统的分析给出广西热带气旋特大暴雨的概念模式。  相似文献   
48.
利用归一化植被指数NDVI(Normalized Difference Vegetation Index)、气候资料以及环流场数据,探讨了中南半岛地区植被覆盖变化特征及其与ENSO(El Niño-Southern Oscillation)的联系。研究表明,降水是影响春季植被生长的主要因子,与NDVI呈显著的正相关关系;而温度、辐射与NDVI呈负相关关系。进一步分析表明,当前期冬季赤道中东太平洋海温异常偏暖(发生厄尔尼诺事件)时,中南半岛附近海平面气压偏高、850 hPa风场辐散,上升运动偏弱,不利于云和降水形成,而有利于太阳辐射增加和温度升高,降水减小和温度升高均抑制春季中南半岛植被生长;反之,当前期冬季发生拉尼娜事件时,有利于中南半岛植被生长。  相似文献   
49.
亚澳季风区水汽输送季节转换特征   总被引:15,自引:4,他引:15  
利用NCEP/NCAR 1957~2001年45年逐日的再分析资料,从地面开始积分计算整层的水汽输送通量,从气候平均的角度分析了亚澳季风区大尺度水汽输送的季节转换演变特征。分析发现,亚澳季风区水汽输送由冬季向夏季的季节转换的基本特征是:夏季大值输送带的建立及其自西向东伸展,伴随着斯里兰卡低涡活动、自南向北的越赤道输送和副高的东撤、南海夏季风建立等一系列天气气候事件;而冬季形势的建立则是副高南侧东风输送带的西伸,伴随夏季大值输送带的断裂、西撤,最后形成亚洲低纬东风输送带,进而形成由北向南的越赤道输送以及澳大利亚和南印度洋夏季风水汽输送。伴随着冬、夏季节转换,中南半岛以西和以东地区的西风水汽输送的经向移动表现出完全不一样的特征,表明印度季风和东亚-西太平洋季风的形成机制有很大不同。  相似文献   
50.
《四川地质学报》2022,(4):562-567
东南亚中南半岛成矿带是特提斯成矿域的重要组成部分,富含丰富的矿产资源(刘书生等,2014)。根据岩浆岩带的空间展布、形成机制、岩石组合类型,按照板块构造、碰撞造山及岩浆事件的火山喷发沉积特征等,将该成矿带中岩浆岩划分为3大类岩浆岩带。通过对东南亚中南半岛地质背景及成矿规律研究,结合前人研究成果,将东南亚中南半岛成矿带划分了12个三级成矿带,6种成矿类型。本文为从整体上认识该区的岩浆岩展布特征,进而总结其成矿作用提供了有益信息,同时为该区开展区域地质调查与矿产勘查工作提供参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号