首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   65篇
  国内免费   228篇
测绘学   3篇
地球物理   193篇
地质学   24篇
海洋学   754篇
综合类   87篇
自然地理   38篇
  2024年   4篇
  2023年   17篇
  2022年   28篇
  2021年   28篇
  2020年   34篇
  2019年   35篇
  2018年   37篇
  2017年   31篇
  2016年   41篇
  2015年   38篇
  2014年   49篇
  2013年   64篇
  2012年   42篇
  2011年   53篇
  2010年   48篇
  2009年   49篇
  2008年   50篇
  2007年   47篇
  2006年   50篇
  2005年   38篇
  2004年   33篇
  2003年   26篇
  2002年   27篇
  2001年   25篇
  2000年   28篇
  1999年   14篇
  1998年   30篇
  1997年   20篇
  1996年   20篇
  1995年   9篇
  1994年   10篇
  1993年   13篇
  1992年   10篇
  1991年   6篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
排序方式: 共有1099条查询结果,搜索用时 46 毫秒
1.
INTRODUCTIONThemainpurposeofthisstudywastodeterminethemagnitudeandfrequencyofharmfuldiatomanddinoflagellateoutbreaksinHongKong’swesternandeasternwaters (e .g.LammaStraitsandPortShelterrespectively)fortheperiodJanuary 1 997toDecember1 999.Thiswasdoneinordertod…  相似文献   
2.
In the Southampton Water estuary (southern England, U.K.), red-tides caused by the planktonic, phototrophic ciliateMesodinium rubrum(=Myrionecta rubra) occur during most summers and sometimes in autumn. These events were investigated in detail between 1985 and 1987 and were characterized by levels of chlorophylla(chl a) of over 100 μg l−1, cell numbers ofM. rubrumof over 1×103 ml−1, oxygen saturations of around 150%, and depleted numbers of macrozooplankton. Initiation of red-water did not appear to be triggered by irradiance or nutrients, but coincided with an increase in temperature and water column stability. This enhanced stability was promoted by increased surface to bottom gradients of both temperature and salinity, and by reduced mixing during neap tides. Development of red-water was accompanied by removal of most of the dissolved NH+4from the water column, whereas some NO3persisted, presumably maintained by freshwater input. NO3and NH+4gradually returned to pre-bloom concentrations as the red-water declined in late summer. Maximal biomass ofM. rubrumappeared to be limited by irradiance, and self-shading probably imposed an upper limit of around 300 mg chl a m−2within the water column. At the observed levels of chl a, irradiance values within the population maximum between 1 and 3 m depth were only just of the order (≈15 μmol photons m−2 s−1) required to balance estimated respiratory demands. Oxygen concentration became undersaturated during the late bloom phase, with minimal values of 20–30% saturation recorded in deeper waters; however, despite this and reduced numbers of macrozooplankton, direct deleterious effects on other organisms were not observed.  相似文献   
3.
Autotrophic biomass and productivity as well as nutrient distributions and phytoplankton cell populations in the James River estuary, Virginia, were quantified both spatially and temporally over a 17-month period. Emphasis was placed on the very low salinity region of the estuary in order to gain information on the fate of freshwater phytoplankters. Differing amounts of freshwater plant biomass are advected into the estuary as living material, DOC or POC and the demonstrated variability of this input must play an important role in marine biogeochemical cycling.Late summer and fall maxima in both chlorophyll a and the photosynthetic production of particulate organic carbon in very low salinity regions were inversely correlated with river discharge.During periods of low river discharge greater than 50% of the chlorophyll a biomass measured at 0‰ disappeared within a narrow range of salinity (0–2‰). Cell enumeration data suggest that species introduced from the freshwater end-member tend to comprise the bulk of the biomass removed. Confounding factors, which may contribute to the regulation of both the abundance and species of phytoplankters mid-river, include the flocculation of colloidal material with phytoplankton cells, the presence of the turbidity maximum and the growth of endemic phytoplankton populations.An inverse relationship exists between the phytoplankton abundance in very low salinity waters and the abundance of biomass measured in the lower portion of the river (estuary). Thus, autotrophic production in the fresh and very low salinity areas may indirectly regulate the onset on the spring bloom in the estuary by controlling the amount of nutrients available.  相似文献   
4.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   
5.
Primary productivity in the East China Sea and its adjacent area was measured by the13C tracer method during winter, summer and fall in 1993 and 1994. The depth-integrated primary productivity in the Kuroshio Current ranged from 220 to 350 mgC m−2d−1, and showed little seasonal variability. High primary productivity (above 570 mgC m−2d−1) was measured at the center of the continental shelf throughout the observation period. The productivity at the station nearest to the Changjiang estuary exhibited a distinctive seasonal change from 68 to 1,500 mgC m−2d−1. Depth-integrated primary productivity was 2.7 times higher in the shelf area than the rates at the Kuroshio Current. High chlorophyll-a specific productivity (mgC mgChl.-a−2d−1) throughout the euphotic zone was mainly found in the shelf area rather than off-shelf area, probably due to higher nutrient availability and higher activity of phytoplankton at the subsurface layer in the shelf area.  相似文献   
6.
Carbon cycle is connected with the most important environmental issue of Global Change.As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ o  相似文献   
7.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
8.
The European Regional Seas Ecosystem Model (ERSEM) has been coupled with a two-dimensional depth-averaged transport model of the Humber plume region and run to simulate 1988–1989. Simulations of the spatial and temporal variations in chlorophyll-a, nitrate, phosphate and suspended particulate matter distributions in winter, spring and summer show how the development of the spring bloom and subsequent maintenance of primary production is controlled by the physicochemical environment of the plume zone. Results are also shown for two stations, one characterised by the high nutrient and suspended matter concentrations of the plume and the other by the relatively low nutrient and sediment concentrations of the offshore waters. The modelled net primary production at the plume site was 105 g C m−2 a−1 and 127 g C m−2 a−1 offshore. Primary production was controlled by light limitation between October and March and by the availability of nutrients during the rest of the year. The phytoplankton nutrient demand is met by in-situ recycling processes during the summer. The likely effect of increasing and decreasing anthropogenic riverine inputs of nitrate and phosphate upon ecosystem function was also investigated. Modelling experiments indicate that increasing the nitrogen to silicate ratio in freshwater inputs increased the production of non-siliceous phytoplankton in the plume. The results of this model have been used to calculate the annual and quarterly mass balances describing the usage of inorganic nitrogen, phosphate and silicate within the plume zone for the period of the NERC North Sea survey (September 1988 to October 1989). The modelled Humber plume retains 3.9% of the freshwater dissolved inorganic nitrogen, 2.2% of the freshwater phosphate and 1.3% of the freshwater silicate input over the simulated seasonal cycle. The remainder is transported into the southern North Sea in either dissolved or particulate form. The reliability of these results is discussed.  相似文献   
9.
本文分析了秦山核电站邻近水域生态零点调查四个航次的浮游植物样品,结果表明:调查区浮游植物的种数和细胞密度在时间尺度上均存在明显的季节变化趋势:夏大于秋大于春大于冬,并且与环境因子的变化密切相关,其中最主要的影响因子是温度、盐度和径流,而影响日变化的环境因子主要是潮汐。  相似文献   
10.
During the period August 1985 to May 1986, phytoplankton in the southern Taiwan Strait was collected and studied for distributional variability in relation to hydrography. The results indicated that maximum standing crops of phytoplankton occurred in October and May due to the outgrowth of certain species of diatoms and blue-green algae. The majority of phytoplankton appeared in the water in the top 25 m and occurred in distinct clusters under the influence of water movement. Multivariate analysis indicated that hydrographic parameters, which accounted for the variability of phytoplankton distribution, varied seasonally. Vertical, spatial and temporal variabilities were also apparent. The close relationship between hydrography and algal distribution justifies the use of variations in the phytoplankton population as a useful tracer of water movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号