首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
地球物理   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 156 毫秒
1
1.
Microplasticity manifestations caused by acoustic wave in the frequency range of about 4.5 kHz–7.0 kHz are detected in consolidated artificial sandstone. Equipment was tested by means of comparison of data obtained for a standard material (aluminium) and sandstone. Microplasticity manifestations in acoustic records are present in the form of ladder‐like changes in the amplitude course. The stress plateaus in the acoustic trace interrupt the amplitude course, transform the wavefront, and shift the arrival time along the time axis. Microplasticity contribution to the acoustic record changes with the increase in the strain amplitude value. The combined elastic–microplastic process conditions the wavefront steepness and its duration. Stress plateaus exert influence on the waveform and, accordingly, on pulse frequency response. These results confirm the earlier data obtained for weakly consolidated rock. This contribution to wave propagation physics can be useful in solving applied problems in material science, seismic prospecting, diagnostics, etc.  相似文献   
2.
Microplasticity manifestations caused by acoustical wave in the frequency range of about 4.5 kHz–7.0 kHz are detected in consolidated artificial sandstone. Equipment was tested by means of comparison of data obtained for a standard material (aluminium) and sandstone. Microplasticity manifestations in acoustic records are present in the form of the ladder‐like changes in the amplitude course. The stress plateaus in the acoustic trace interrupt the amplitude course, transform the wavefront, and shift the arrival time along the time axis. Microplasticity contribution to the acoustic record changes with the increase in the strain amplitude value. The combined elastic–microplastic process conditions the wavefront steepness and its duration. Stress plateaus exert influence on the waveform and, accordingly, on pulse frequency response. These results confirm the earlier data obtained for weakly consolidated rock. This contribution to wave propagation physics can be useful in solving applied problems, as, for instance, the reservoir properties prediction by means of wave attenuation in acoustic logging and seismic prospecting.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号