首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 421 毫秒
1
1.
The study is motivated by recent findings of the decrease in the momentum transfer from strong winds to sea. The Kelvin–Helmholtz instability (KHI) of a three-fluid system of air, foam and water is examined within the range of intermediately short surface waves. The foam-layer thickness necessary for effective separation of the atmosphere and the ocean is estimated. Due to high density contrasts in the three-fluid system, even a relatively thin foam layer between the atmosphere and the ocean can provide a significant stabilization of the water surface by the wavelength shift of the instability towards smaller scales. It is conjectured that such stabilization qualitatively explains the observed reduction of roughness and drag.  相似文献   
2.
This article documents a 240,000-m3 debris flow resulting from a glacial lake outburst flood in Fjærland, Western Norway, May 8, 2004. The event started when a glacial lake breached a moraine ridge. The ensuing debris flow was able to erode material along its path, increasing in volume from about 25,000 to 240,000 m3 before depositing about 3 km from its starting point. Field investigations, pre- and post-flow aerial photographs as well as airborne laser scanning (LIDAR) were used to describe and investigate the flow. The most striking and unusual feature of this case study is the very pronounced erosion and bulking. We have made a detailed study of this aspect. Erosion and entrainment is quantified and the final volume of the debris flow is determined. We also present geometrical and sedimentological features of the final deposit. Based on the Fjærland data, we suggest that a self-sustaining mechanism might partly explain the extreme growth of debris flows traversing soft terrain.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号