首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
地球物理   7篇
地质学   3篇
海洋学   13篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
This paper presents the results of a numerical performance analysis to demonstrate the worthiness of a recently patented new concept propulsor, the so-called “thrust-balanced propeller (TBP)”. The main advantage of this unconventional propulsor is its inherent ability to reduce the unsteady effect of blade forces and moments when it is operating in a non-uniform wake flow. The propulsor comprises a pair of diametrically opposed blades that are connected to one another and mounted so as to be rotatable together through a limited angle about their spindle axis. A quasi-hydrodynamic approach is described and applied to perform the numerical analysis using a state-of-the-art lifting surface procedure for conventional propellers. Performance comparisons with a conventional fixed-pitch propeller are made for the blade forces and moments, efficiency, cavitation extents and fluctuating hull pressures. Bearing in mind the quasi-static nature of the analyses, the results present favourable performance characteristics for the thrust-balanced propeller and support the worthiness of the concept. However, the concept needs to be proved through physical model tests, which are planned to take in a cavitation tunnel.  相似文献   
2.
The reduction of energy consumption of high speed submersible bodies is an important challenge in hydrodynamic researches. In this paper, shape optimization of two-dimensional cavitators in supercavitating flows is studied. A two dimensional supercavitation potential flow passes a symmetric two dimensional cavitator, which is placed perpendicular to the flow in a channel of infinite length and immediately a cavity is formed behind the cavitator. This is because of the generation of a gas or vapor cavity between the body and the surrounding liquid due to the change in a high speed flow direction passing the cavitator. Drag force acting on this supercavitating body dictates the thrust requirements for the propulsion system, to maintain a required cavity at the operating speed. Therefore, any reduction in the drag force, by modifying the shape of the cavitator, will lead to decrease this force. This study concentrates on the optimization of two dimensional cavitators in order to decrease drag coefficient for a specified after body length and velocity in a potential flow. To achieve this goal a multi-objective optimization problem is defined to optimize cavitator shapes in supercavitating flow. The so-called NSGA II (Non-dominated Sorting Genetic Algorithm) algorithm is used as an optimization method. Design parameters and constraints are obtained according to supercavitating flow characteristics and cavitator modeling and objective functions are generated using Linear Regression Method. The obtained results are compared with other classic optimization methods, like the weighted sum method, for validation.  相似文献   
3.
4.
Rudders of large container ships are easily affected by cavitation, which is well known to be induced by significant axial flows behind a propeller and discontinuities in the rudder. Among several methods to prevent or reduce the cavitation erosion occurred in the rudder, painting is gaining a lot of attention because it can be employed easily and cheaply. To conduct erosion tests properly, the simulation of heavily erosive cavitation is necessary. This can be generated using an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI (Maritime & Ocean Engineering Research Institute). The inclined shaft of the propeller creates strong cavitation, which occurs around the root of the propeller blade. This cavitation creates impacts through the collapsing process that are very severe, and are useful for realistic and efficient cavitation erosion tests. In the present study, the newly developed cavitation erosion test method is successfully employed to evaluate marine coatings that is mainly composed of epoxy elastomer or silicone polymer material. Silicone polymer-type paint B was found to have three times larger endurance than epoxy elastomer-type paint A.  相似文献   
5.
The Sanmenxia Project completed in 1960 is a multi-purpose hydro project with emphasis on flood control. After the expounding, serious deposition occurs in the upstream part of the reservoir and the Weihe River. The project has to be rebuilt twice in the period from 1964 to 1978. Thus the discharge capacity is greatly enlarged by excavating two side tunnels on the left bank, converting three penstocks into sluice conduits and reopening & bottom outlets formerly used for di- version. By changing the operational mode from storing water year round to stor- ing clear water during the dry season and sluicing sediment during the flood season, the sediment problem of the reservoir is largely solved and multi-purpose benefits of the project are partially retained. But the heavy sediment load still caused serious abrasion on bottom outlets and turbines, particularly on the inlet gate slot, the service gate slot and the floor. Much effort has been made to clarify the mechanism of the damage and to choose abrasion-resistant material for repair. The repair of the bottom outlets has been going on since 1980. This paper describes the abrasion on the bottom outlets in details and the subsequent repair effected.  相似文献   
6.
It is ideal to design the best hull shape for a floating production storage and offloading unit (FPSO) that meets all performance criteria from an engineering point of view. However, in reality, it is difficult to satisfy all the criteria at the same time. If one of the performances cannot meet the criteria, then additional equipment or systems are installed to improve that performance. In this paper, when an FPSO cannot meet the towing stability inherently, we attempt to establish a procedure for determining an auxiliary towing system. Firstly, various systems that can be applied to the FPSO are compared and reviewed to improve the towing stability of the FPSO. Among them, using three active thrusters was chosen as the auxiliary towing system. Improvement of towing stability was verified from a towing model test conducted at the Maritime Research Institute Netherlands (MARIN). However, thruster cavitation was raised as a key problem when using thrusters for a purpose for which they were not intended. A thruster cavitation model test was additionally performed to check the safety of the thrusters. Based on these results, a safe operating range under extreme condition was confirmed by observing the occurrence of thruster cavitation. The predicted maximum unit total thrust of each thruster was compared with the observed safe operating range. Finally, the effectiveness and safety of the auxiliary towing system was verified.  相似文献   
7.
依据地震地热说原理,搜集国内外地震层析成像研究的成果.揭示了地震柱的物理属性。得出全球24个地震柱中已有资料的20个地震柱的深部地幔圆锥体均具有P波高速异常体特征,相反,只有火山和浅源地震活动而无中、深源地震活动的地区,比如冰岛和夏威夷,其地幔深部则为P波低速异常体。为解释这个重要的物理现象和构造现象,引入空化理论解释并提出了3个假设。地震柱概念是地震地热说赖以生存的物质基础和构造基础,是与当今流行的地质学派板块构造、地质力学和地幔柱理论的最大区别。深入解读地震柱的物理属性及其构造学意义.或许能为构造地质学和地球动力学带来革命性的大讨论。  相似文献   
8.
9.
K. I. Matveev   《Ocean Engineering》2003,30(9):1179-1190
Artificial cavitation, or ventilation, is produced by releasing gas into the liquid flow. One of the objectives of creating this multiphase flow is to reduce frictional and sometimes wave resistance of a marine vehicle completely or partially immersed in the water. Flows around surface ships moving along the water–air boundary are considered in this paper. It is favorable to achieve a negative cavitation number in the developed cavitating flow under the vessel’s bottom in order to generate additional lift. Cavities, formed in the flow, have limiting parameters that are affected by propulsion and lift-enhancing devices. Methods for calculating these influences and the results of a parametric study are reported.  相似文献   
10.
In view of environmental concerns, there is increasing demand to optimize the ships for the actual operating condition rather than for calm water. Now, in order to apply this for propeller design, a first step would be to study the effects of waves on propeller operation. Therefore, the aim of this paper is to identify and quantify the effect of various factors affecting the propeller in waves. The performance of KVLCC2 propeller in the presence of three different waves has been compared with calm water performance. Changes in performance in terms of cavitation, pressure pulses, and efficiency have been studied. Significant increase in pressure pulses has been observed due to wake change in waves even though cavitation did not show any significant change. An analysis using cavitation bucket diagram in different wave conditions indicates that a propeller optimized for calm water wake may perform much worse in the presence of waves. Therefore, having wake variation at least in critical wave conditions (where the wavelength is close to ship length) in addition to calm water wake could be very useful to ensure that the propeller performs equally well in the presence of waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号