首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  国内免费   16篇
大气科学   19篇
地球物理   1篇
地质学   22篇
海洋学   3篇
自然地理   4篇
  2023年   3篇
  2022年   1篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1991年   1篇
排序方式: 共有49条查询结果,搜索用时 0 毫秒
31.
Future projections of climate suggest our planet is moving into a ‘super‐interglacial’. Here we report a global synthesis of ice, marine and terrestrial data from a recent palaeoclimate equivalent, the Last Interglacial (ca. 130–116 ka ago). Our analysis suggests global temperatures were on average ~1.5°C higher than today (relative to the AD 1961–1990 period). Intriguingly, we identify several Indian Ocean Last Interglacial sequences that suggest persistent early warming, consistent with leakage of warm, saline waters from the Agulhas Current into the Atlantic, intensifying meridional ocean circulation and increasing global temperatures. This mechanism may have played a significant positive feedback role during super‐interglacials and could become increasingly important in the future. These results provide an important insight into a future 2°C climate stabilisation scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
32.

尼玛盆地地处青藏高原中部特殊区域,自新生代以来沉积了大套连续的湖相暗色油页岩,其富含生物分子化石,对重建青藏高原古气候和古环境具有重要意义。本文通过对尼玛盆地古近系牛堡组康嘎勒剖面正构烷烃及相关参数分布特征进行研究,结果显示,剖面油页岩正构烷烃分布从底到顶由单峰前峰型向单峰后峰型过渡,具2个旋回周期;碳优势指数相对稳定,但TAR、ACL、PaqnC≤21/nC≥25变化较大,表明湖泊沉积有机质由内源为主的低等藻类向高等水生植物和外源陆生高等植物转变,且区域气候环境由温凉湿润向炎热干旱逐步演化。综合分析认为,尼玛盆地在始新世的气候变化在很大程度上是受西风环流和季风系统的共同影响。且西风环流和季风的强度变化与全球气候存在一定的关系。即全球变暖时,西风环流势力减弱,西风环流和残余洋水汽为高原中部提供的有效降水减少,气候相对干旱;而在全球降温时,西风环流和印度季风增强,残余洋水汽的叠加又为高原中部提供了充足的有效降水,气候湿润。

  相似文献   
33.
宋高  郑绵平 《地质学报》2022,96(7):2272-2280
色林错位于青藏高原中部印度季风和西风环流的过渡地带,同时受西风环流和印度季风系统控制,是研究二者进退变化特征的理想场所。本文利用色林错SL-1钻孔中介形虫Limnocythere inopinata的丰度及其壳体微量元素Mg/Ca和Mn/Ca比值重建了色林错5.3 ka BP以来的古气候环境变化特征。5.3~2.9 ka BP,L.inopinata丰度较小,壳体的低Mg/Ca比值和高Mn/Ca比值表明此阶段气候偏冷湿;2.9~1.8 ka BP,L.inopinata丰度较前一阶段增加,壳体Mg/Ca比值略有增长但仍为低值表明气温虽然有所回升但仍然较低,Mn/Ca比值较前一阶段明显降低,指示湖泊水位下降;1.8 ka BP至今,L.inopinata丰度达到最大,壳体的高Mg/Ca和Mn/Ca比值指示湖泊温度和水位均呈显著的上升趋势。通过与西风区、过渡区以及印度季风区其他湖泊的环境沉积记录对比,本文认为青藏高原中部地区在中全新世晚期主要受西风环流影响,气温较低,西风带来大量水汽使得湖面呈扩张趋势;而到晚全新世西风环流逐渐北撤,色林错受季风影响更大,季风带来的降水和气温升高导致的冰川融...  相似文献   
34.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   
35.
影响华北汛期降水的水汽输送过程   总被引:6,自引:3,他引:6  
利用1951~2005年NCEP再分析资料和中国160站月降水资料,分析了华北汛期水汽输送的时空特征及其与降水的关系,发现不同水汽通道对华北降水的影响区域不同。华北的水汽输送也具有明显的年际变化,华北多雨年和少雨年的水汽通量分布有明显差异。EOF分析表明,在华北汛期多雨年,上述水汽通道有向华北地区的正异常水汽输送。华北汛期水汽主要来自亚洲季风水汽输送,其次是西风带的水汽输送,它们与降水具有相似的年代际变化。1970年代中期以后,季风的水汽输送显著减弱,西风带水汽输送的重要性相对增大,华北降水在1980年代初的突变与季风水汽输送1970年代中期的突变密切相关。  相似文献   
36.
Precipitation in northern Chile is controlled by two great wind belts—the southern westerlies over the southern Atacama and points south (> 24° S) and the tropical easterlies over the northern and central Atacama Desert (16–24° S). At the intersection of these summer and winter rainfall regimes, respectively, is a Mars‐like landscape consisting of expansive surfaces devoid of vegetation (i.e. absolute desert) except in canyons that originate high enough to experience runoff once every few years. Pollen assemblages from 39 fossil rodent middens in one of these canyons, Quebrada del Chaco (25° 30′ S), were used to infer the history of vegetation and precipitation at three elevations (2670–2800 m; 3100–3200 m; 3450–3500 m) over the past 50 000 years. When compared to modern conditions and fossil records to the north and south, the pollen evidence indicates more winter precipitation at > 52, 40–33, 24–17 k cal. yr BP, more precipitation in both seasons at 17–14 k cal. yr BP, and more summer precipitation from 14–11 k cal. yr BP. Younger middens are scarce at Quebrada del Chaco, and the few Holocene samples indicate hyperarid conditions comparable to today. The only exception is a pollen assemblage that indicates a brief but significant interlude of increased winter precipitation in the last millennium. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
37.
China's western interior is a climatologically complex region, where climatic conditions are primarily controlled by the westerly jet stream and the Asian monsoon system. Observations reveal that the δ18O signatures of these atmospheric elements as expressed in their meteoric waters are different, and these differences are reflected in the lacustrine systems that are ultimately fed by the meteoric waters. Empirical orthogonal function (EOF) decomposition of 17 lacustrine δ18O records from this area clearly reveals the spatial and temporal structures of climate changes during the last 15 ka. The first EOF mode, dominated by sites in the NW sector, captures the temperature effect on the variability of the δ18O dataset. We interpret the variations through time in the amplitude of this mode to be indicative of changes in summer air temperature. The second EOF mode, heavily weighted by sites in the SE sector, reveals the ‘amount effect’ on δ18O, and thus its amplitude time series indicates changes in the intensity of the Asian summer monsoon. Our EOF‐based reconstructions of regional climate are generally consistent with the δ18O records of ice cores, cave speleothems and marine carbonates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
38.
Long, well-dated records of climate change in Australia are rare because most of the continent is prone to deflation and sediments are difficult to date beyond 40?ka. Deep-sea cores, containing terrigenous material, provide an ideal alternative to terrestrial records, because of continuous sedimentation and a robust chronology derived from oxygen isotopes. In this paper, the first of a series of two, we present pollen and spores data from core Fr1/94-GC3 from the East Tasman Plateau. This core is positioned at the southern extreme of the East Australia Current and simultaneously records changes in both oceanography and environments both offshore and in southeastern Australia. In an area of slow sedimentation, this core provides a continuous record of vegetation change in southeastern Australia and the southern Tasman Sea over approximately the last half a million years. Through time, glacial periods have progressively become warmer and shorter. Alpine plant taxa become more restricted with time and rainforest taxa expand to a far more restricted degree during the present interglacial period than the previous one, representing a fundamental shift in the vegetation of Tasmania. We apply transfer functions to reconstruct past rainfall and land temperatures based on the palynoflora that are then compared against the marine proxy record.  相似文献   
39.
Holocene fire-climate-vegetation linkages are mostly understood at individual sites by comparing charcoal and pollen records with other paleoenvironmental proxy and model simulations. This scale of reconstruction often obscures detection of large-scale patterns in past fire activity that are related to changes in regional climate and vegetation. A network of 31 charcoal records from southern South America was examined to assess fire history along a transect from subtropic to subantarctic biomes. The charcoal data indicate that fire activity was greater than present at ca. 12,000 cal yr BP and increased further and was widespread at 9500 cal yr BP. Fire activity decreased and became more spatially variable by 6000 cal yr BP, and this trend continued to present. Atmospheric circulation anomalies during recent high-fire years show a southward shift in westerlies, and paleoclimate model simulations and data syntheses suggest that such conditions may have prevailed for millennia in the early Holocene when the pole-to-equator temperature gradients were weaker and annual temperatures were higher than present, in response to orbital-time-scale insolation changes.  相似文献   
40.
Radiocarbon-dated pollen records of two adjacent sediment cores from Canal de la Puntilla (40°57′09″S, 72°54′18″W) in the Chilean Lake District reveal that a sparsely vegetated landscape prevailed during the portion of the Last Glacial Maximum between 20200 and about 14800 14C yr BP. Dominating the vegetation was Nothofagus, Gramineae and Compositae, along with taxa commonly found today above the Andean treeline (Perezia-type, Valeriana) and in Magellanic Moorlands (Donatia, Astelia). Nothofagus expanded between 20200 and 15800 14C yr BP, interrupted by a reversal at 19200 14C yr BP and followed by a prominent increase in Gramineae pollen between 15800 and about 14800 14C yr BP. A major increase in Nothofagus started at about 14800 14C yr BP, followed by an abrupt expansion of thermophilous Valdivian/North Patagonian Rain Forest taxa (Myrtaceae, Lomatia/Gevuina, Hydrangea, etc.) at about 14000 14C yr BP. An opening of the rain forest and an expansion of Podocarpus nubigena, Misodendrum, and Maytenus disticha-type subsequently occurred between 11000 and 10000 14C yr BP. These results suggest that mean annual temperature was 6–7°C colder than at present, with twice the modern annual precipitation between 20200 and 14000 14C yr BP, implying a northward shift and intensification of the westerlies storm-tracks. Slight climate warming occurred between 20200 and 15800 14C yr BP, featuring cooling reversals at 19200 14C yr BP, and later at 15800 14C yr BP. The warming of the last termination started at about 14800 14C yr BP, and reached a total temperature rise of ≥5°C by 12400 14C yr BP, followed by cooling between 11000 and 10000 14C yr BP. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号