首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   389篇
  国内免费   482篇
测绘学   34篇
大气科学   792篇
地球物理   610篇
地质学   607篇
海洋学   187篇
天文学   39篇
综合类   68篇
自然地理   323篇
  2024年   11篇
  2023年   43篇
  2022年   64篇
  2021年   107篇
  2020年   108篇
  2019年   100篇
  2018年   76篇
  2017年   97篇
  2016年   114篇
  2015年   96篇
  2014年   140篇
  2013年   182篇
  2012年   111篇
  2011年   137篇
  2010年   111篇
  2009年   138篇
  2008年   151篇
  2007年   136篇
  2006年   99篇
  2005年   91篇
  2004年   95篇
  2003年   60篇
  2002年   54篇
  2001年   49篇
  2000年   39篇
  1999年   31篇
  1998年   33篇
  1997年   41篇
  1996年   38篇
  1995年   18篇
  1994年   22篇
  1993年   14篇
  1992年   9篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2660条查询结果,搜索用时 15 毫秒
991.
It is sometimes assumed that steric sea-level variations do not produce a gravity signal as no net mass change, thus no change of ocean bottom pressure is associated with it. Analyzing the output of two CO2 emission scenarios over a period of 2000 years in terms of steric sea-level changes, we try to quantify the gravitational effect of steric sea-level variations. The first scenario, computed with version 2.6 of the Earth System Climate Model developed at the University of Victoria, Canada (UVic ESCM), is implemented with a linear CO2 increase of 1% of the initial concentration of 365 ppm and shows a globally averaged steric effect of 5.2 m after 2000 years. In the second scenario, computed with UVic ESCM version 2.7, the CO2 concentration increases quasi-exponentially to a level of 3011 ppm and is hold fixed afterwards. The corresponding globally averaged steric effect in the first 2000 years is 2.3 m. We show, due to the (vertical) redistribution of ocean water masses (expansion or contraction), the steric effect results also in a small change in the Earth’s gravity field compared to usually larger changes associated with net mass changes. Maximum effects for computation points located on the initial ocean surface can be found in scenario 1, with the effect on gravitational attraction and potential ranging from 0.0 to −0.7·10−5 m s−2 and −3·10−3 to 6·10−3 m2 s−2, respectively. As expected, the effect is not zero but negligible for practical applications.  相似文献   
992.
In part 1 of this two-paper series, a brief summary of the basic concepts and theories used in developing the Generalized Stream Tube model for Alluvial River Simulation (GSTARS) computer models was presented. Part 2 provides examples that illustrate some of the capabilities of the GSTARS models and how they can be applied to solve a wide range of river and reservoir sedimentation problems. Laboratory and field case studies are used and the examples show representative applications of the earlier and of the more recent versions of GSTARS. Some of the more recent capabilities implemented in GSTARS3, one of the latest versions of the series, are also discussed here with more detail.  相似文献   
993.
Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were conducted on the entire running surface area associated with six reopened stream crossing approaches in the south‐western Virginia Piedmont physiographic region, USA. Event‐based surface run‐off and associated total suspended solid (TSS) concentrations were compared among a succession of gravel surfacing treatments that represented increasing intensities of best management practice (BMP) implementation. The three treatments were no gravel (10–19% cover), low gravel (34–60% cover), and high gravel (50–99% cover). Increased field hydraulic conductivity was associated with maximized surface cover and ranged from 7.2 to 41.6, 11.9 to 46.3, and 16.0 to 58.6 mm h−1 respectively for the no gravel, low gravel, and high gravel treatments. Median TSS concentration of surface run‐off for the no gravel treatment (2.84 g l−1) was greater than low gravel (1.10 g l−1) and high gravel (0.82 g l−1) by factors of 2.6 and 3.5 respectively. Stream crossing approaches with 90–99% surface cover had TSS concentrations below 1 g l−1. Reducing the length of road segments that drain directly to the stream can reduce the costs associated with gravel surfacing. This research demonstrates that judicious and low‐cost BMPs can ameliorate poor water control and soil erosion associated with reopening legacy roads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
994.
Nutrient enrichment and changes in riparian tree species composition affect many streams worldwide but their combined effects on decomposers and litter decomposition have been rarely assessed. In this study we assessed the effects of experimental nitrogen (N) enrichment of a small forest stream on the decomposition of three leaf litter species differing in initial chemical composition [alder (Alnus glutinosa), chestnut (Castanea sativa) and poplar (Populus nigra)], incubated individually and in 2-species mixtures during late spring-early summer. To better understand the effects of litter mixing on litter decomposition, component litter species were processed individually for remaining mass and fungal reproductive activity. Litter decomposition rates were high. Nitrogen enrichment significantly stimulated litter decomposition only for alder incubated individually. Differences among litter treatments were found only at the N enriched site where the nutrient rich alder litter decomposed faster than all other litter treatments; only at this site was there a significant relationship between litter decomposition and initial litter N concentration. Decomposition rates of all litter mixtures were lower than those expected from the decomposition rates of the component litter species incubated individually, at the N enriched and reference sites, suggesting antagonistic effects of litter mixing. Conidial production by aquatic hyphomycetes for each sampling date was not affected by nutrient enrichment, litter species or mixing. Aquatic hyphomycetes species richness for each sampling date was higher at the N enriched site than at the reference site and higher for alder litter than for chestnut and poplar, but no effect of mixing was found. Aquatic hyphomycetes communities were structured by litter identity and to a lesser extent by N enrichment, with no effect of mixing. This study suggests that nutrient enrichment and litter quality may not have such strong effects on decomposers and litter decomposition in warmer seasons contrary to what has been reported for autumn-winter. Changes in the composition of the riparian vegetation may have unpredictable effects on litter decomposition independently of streams trophic state.  相似文献   
995.
For the appropriate management and restoration of rivers, isolated vegetation is often a practical means for improving stream habitat and ecology. The effect of a finite vegetation patch on flow and bed morphology in an open channel was investigated using laboratory experiments. The patch containing emergent and submerged vegetation was modeled using circular cylinders and located mid‐channel along a side wall. Several configurations of the patch and submergence ratio (i.e. water depth to the height of vegetation), and two flow conditions (i.e. below and above the sediment motion threshold) were considered. For flows below the sediment motion threshold, erosion occurred primarily on the opposite side of the patch and near the leading edge of the patch. The degree of scouring depth observed in both these regions was affected by the submergence ratio and it increased with the non‐dimensional flow blockage (i.e. the product of the patch density and width). In contrast, for flows above the sediment motion threshold, sediment accumulated within and around the patch due to a reduction in bed shear stress, which was strongly influenced by the flow blockage and the obstruction ratio (i.e. the ratio of patch width to channel width). The eroded area observed within the patch was consistent with the interior adjustment region where the deceleration and diversion of flow occurred through the patch. As the flow blockage increased or as the obstruction ratio decreased, the deposition rate within and behind the patch decreased. Furthermore, the deposition rate increased with an increase in the ratio of flow rate through the patch to total flow rate regardless of the submergence ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
996.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
The rangeland hydrology and erosion model (RHEM) is a new process‐based model developed by the USDA Agricultural Research Service. RHEM was initially developed for functionally intact rangelands where concentrated flow erosion is minimal and most soil loss occurs by rain splash and sheet flow erosion processes. Disturbance such as fire or woody plant encroachment can amplify overland flow erosion by increasing the likelihood of concentrated flow formation. In this study, we enhanced RHEM applications on disturbed rangelands by using a new approach for the prediction and parameterization of concentrated flow erosion. The new approach was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or by tree encroachment. The sediment detachment rate for concentrated flow was calculated using soil erodibility and hydraulic (flow width and stream power) parameters. Concentrated flow width was calculated based on flow discharge and slope using an equation developed specifically for disturbed rangelands. Soil detachment was assumed to begin with concentrated flow initiation. A dynamic erodibility concept was applied where concentrated flow erodibility was set to decrease exponentially during a run‐off event because of declining sediment availability. Erodibility was estimated using an empirical parameterization equation as a function of vegetation cover and surface soil texture. A dynamic partial differential sediment continuity equation was used to model the total detachment rate of concentrated flow and rain splash and sheet flow. The enhanced version of the model was evaluated against rainfall simulation data for three different sites that exhibit some degree of disturbance by fire and/or by tree encroachment. The coefficient of determination (R2) and Nash–Sutcliffe efficiency were 0.78 and 0.71, respectively, which indicates the capability of the model using the new approach for predicting soil loss on disturbed rangeland. By using the new concentrated flow modelling approach, the model was enhanced to be a practical tool that utilizes readily available vegetation and soil data for quantifying erosion and assessing erosion risk following rangeland disturbance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
We implemented multiple independent field techniques to determine the direction and velocity of groundwater flow at a specific stream reach in a glacier forefield. Time‐lapse experiments were conducted using two electrical resistivity tomography (ERT) lines installed in a cross pattern. A circular array of groundwater tubes was also installed to monitor groundwater flow via discrete salt injections. Both inter‐borehole and ERT results confirmed this stream section as a losing reach and enabled quantification of the flow direction. Both techniques yielded advection velocities varying between 5.7 and 21.8 m/day. Estimates of groundwater flow direction and velocity indicated that groundwater infiltrates from the stream nearby and not from the adjacent lateral moraine. Groundwater age estimated from radon concentration measurements supported this hypothesis. Despite uncertainties inherent to each of the methods deployed, the combination of multiple field techniques allowed drawing consistent conclusions about local groundwater flow. We thus regard our multi‐method approach as a reliable way to characterize the two‐dimensional groundwater flow at sites where more invasive groundwater investigation techniques are difficult to carry out and local heterogeneities can make single measurements unreliable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
999.
Little research has examined whether forests reduce stream water eutrophication in agricultural areas during spring snowmelt periods. This study evaluated the role of forests in ameliorating deteriorated stream water quality in agricultural areas, including pasture, during snowmelt periods. Temporal variation in stream water quality at a mixed land‐use basin (565 ha: pasture 13%, forestry 87%), northern Japan, was monitored for 7 years. Synoptic stream water sampling was also conducted at 16 sites across a wide range of forest and agricultural areas in a basin (18.3 km2) in spring, summer and fall. Atmospheric nitrogen (N) and phosphorus (P) deposition were measured for 4 years. The results showed that concentration pulses of nitrate, organic N and total P in stream water were observed when discharge increased during spring snowmelt. Their concentrations were high when silicate concentrations were low, suggesting surface water exported from pasture largely contributed to stream water pollution during snowmelt. Atmospheric N and P deposition (4.1 kg N ha?1 y?1; 0.09 kg P ha?1 y?1, respectively) was too low to affect the background concentrations of N and P in streams from forested areas. Reduction of eutrophication caused by nutrients from pasture was mainly due to dilution by water containing low concentrations of N and P exported from forested areas, whereas in‐stream reduction was not a dominant process. Results indicate that forests have a limited capacity to reduce the concentration pulses of N and P in stream water during snowmelt in this study basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
McMurdo dry valleys of Antarctica represent the largest of the ice-free areas on the Antarctic continent, containing glaciers, meltwater streams, and closed basin lakes. Previous geochemical studies of dry valley streams and lakes have addressed chemical weathering reactions of hyporheic substrate and geochemical evolution of dry valley surface waters. We examine cation transport and exchange reactions during a stream tracer experiment in a dry valley glacial meltwater stream. The injection solution was composed of dissolved Li+, Na+, K+, and Cl-. Chloride behaved conservatively in this stream, but Li+, Na+, and K+ were reactive to varying degrees. Mass balance analysis indicates that relative to Cl-, Li+ and K+ were taken up in downstream transport and Na+ was released. Simulations of conservative and reactive (first-order uptake or generation) solute transport were made with the OTIS (one-dimensional solute transport with inflow and storage) model. Among the four experimental reaches of Green Creek, solute transport simulations reveal that Li+ was removed from stream water in all four reaches, K+ was released in two reaches, taken up in one reach, and Na+ was released in all four reaches. Hyporheic sediments appear to be variable with uptake of Li+ in two reaches, uptake of K+ in one reach, release of K+ in two reaches, and uptake of Na+ in one reach. Mass balances of the conservative and reactive simulations show that from 1.05 to 2.19 moles of Li+ was adsorbed per reach, but less than 0.3 moles of K+ and less than 0.9 moles of Na+ were released per reach. This suggests that either (1) exchange of another ion which was not analyzed in this experiment or (2) that both ion exchange and sorption control inorganic solute transport. The elevated cation concentrations introduced during the experiment are typical of initial flows in each flow season, which flush accumulated dry salts from the streambed. We propose that the bed sediments (which compose the hyporheic zone) modulate the flushing of these salts during initial flows each season, due to ion exchange and sorption reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号