首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   33篇
  国内免费   68篇
测绘学   2篇
大气科学   150篇
地球物理   21篇
地质学   16篇
海洋学   39篇
天文学   183篇
综合类   6篇
自然地理   17篇
  2023年   8篇
  2022年   4篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   2篇
  2015年   12篇
  2014年   14篇
  2013年   17篇
  2012年   20篇
  2011年   17篇
  2010年   14篇
  2009年   39篇
  2008年   23篇
  2007年   42篇
  2006年   36篇
  2005年   28篇
  2004年   24篇
  2003年   23篇
  2002年   14篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   8篇
  1994年   9篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有434条查询结果,搜索用时 625 毫秒
101.
This paper describes the leeside wind storm of 25–26 March 1998, the most intense wind storm of the last decade in Northwestern Greece. This wind storm produced wind gusts of  30 m s− 1 that resulted in tree uprooting, roof damaging, electric power network disruption and flooding in the lake-side areas of Ioannina city in Northwestern Greece. With the aim to identify the role of Mountain Mitsikeli near the city of Ioannina on the windstorm and to investigate the physical mechanisms responsible for such orographically induced weather events, numerical simulations with MM5 model have been performed. The model results showed that a resolution of 2-km resolution is necessary in order to reproduce the localized character of the wind storm. The analysis revealed that a synergistic combination of the cross-barrier northeasterly flow, the stable layer above the mountain top and the presence of a critical level, led to the intensification of the lee side winds during the studied wind event. Sensitivity experiments with modified topography, further supported the important role of mountain Mitsikeli that stands as an isolated obstacle, on the modification of the wind field during the observed windstorm.  相似文献   
102.
一次连续性暴雨中双雨带的成因分析   总被引:3,自引:1,他引:2  
利用NCEP/ NCAR 1 ?×1 ?再分析资料,对2005年6月17—22日发生在长江以南的一次连续性暴雨过程分析发现,在连续性暴雨过程中,长江以南有两支雨带存在,北雨带与冷锋降水以及副热带西风急流右后方的非地转场引起的质量调整有关。南雨带的形成与东、西风急流和南亚高压的共同作用有关:东风急流中心右后部的非地转场可形成反环流,有利于南雨带形成;南亚高压脊线附近以及东风急流的右后方的du/dt<0,可导致雨区附近及南部强的v-vg<0场出现;当西风急流南压,在雨区的北部即西风中心的后部可形成强的v-vg>0,三者共同作用的质量调整使雨区上空出现强辐散场导致暖区强降水出现。分析发现南雨带中层有θe锋区存在,该锋区有利于不稳定能量的释放,使暴雨加强,当南北锋区接近时雨带合并。  相似文献   
103.
I review various phenomena associated with mass‐accreting white dwarfs (WDs) in the view of supersoft X‐ray sources. When the mass‐accretion rate is low (acc < a few × 10–7 M⊙yr–1), hydrogen nuclear burning is unstable and nova outbursts occur. A nova is a transient supersoft X‐ray source (SSS) in its later phase which timescale depends strongly on the WD mass. The X‐ray turn on/off time is a good indicator of the WD mass. At an intermediate mass‐accretion rate an accreting WD becomes a persistent SSS with steady hydrogen burning. For a higher mass‐accretion rate, the WD undergoes “accretion wind evolution” in which the WD accretes matter from the equatorial plane and loses mass by optically thick winds from the other directions. Two SSS, namely RX J0513‐6951 and V Sge, are corresponding objects to this accretion wind evolution. We can specify mass increasing WDs from light‐curve analysis based on the optically thick wind theory using multiwavelength observational data including optical, IR, and supersoft X‐rays. Mass estimates of individual objects give important information for the binary evolution scenario of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
104.
The velocity profiles and properties of proto-magnetar winds are investigated.It is found that the corotation of wind matter with magnetic field lines significantly affects r-process nucleosynthesis and could lead to long duration γ-ray bursts and hyper-energetic supernovae.  相似文献   
105.
Using a mesoscale model,a numerical study on a heavy rainfall case occurring in the Changjiang-Huaihe River Basin is made in this paper.The influence of the intensity of northeasterly wind in front of the Qinghai-Xizang high at upper level on the low level wind field and development of mesoscale systems as well as heavy rainfall is investigated.The model well reproduced the heavy rainfall process and the weather systems associated.And it indicates that the strong northeasterly flow around the high at upper troposphere will bring about not only the strengthening of low level southeasterly wind,but also the appearance of shear-line and mesoscale vortex at low level.The coupling of northerly wind at upper level and southerly wind at lower level constructs a vertical indirect circulation which is most favourable for the development of convective motions.Its ascending branch in the shear-line area is very strong and shows a pronounced mesoscale characteristic.  相似文献   
106.
The role of intraseasonal oscillations (ISOs) in modulating synoptic and interannual variations of surface winds over the Indian monsoon region is studied using daily averaged National Centers for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalyses for the period 1987–1996. Two dominant ISOs are found in all years, with a period between 30–60 days and 10–20 days respectively. Although the ISOs themselves explain only about 10–25% of the daily variance, the spatial structure of variance of the ISOs is found to be nearly identical to that of high frequency activity (synoptic disturbances), indicating a significant control by the ISOs in determining the synoptic variations. Zonal and meridional propagation characteristics of the two modes and their interannual variability are studied in detail. The synoptic structure of the 30–60 day mode is similar in all years and is shown to be intimately related to the strong (‘active’) or weak (‘break’) phases of the Indian summer monsoon circulation. The peak (trough) phase of the mode in the north Bay of Bengal corresponds to the ‘active’ (‘break’) phase of monsoon strengthening (weakening) the entire large scale monsoon circulation. The ISOs modulate synoptic activity through the intensification or weakening of the large scale monsoon flow (monsoon trough). The peak wind anomalies associated with these ISOs could be as large as 30% of the seasonal mean winds in many regions. The vorticity pattern associated with the 30–60 day mode has a bi-modal meridional structure similar to the one associated with the seasonal mean winds but with a smaller meridional scale. The spatial structure of the 30–60 day mode is consistent with fluctuations of the tropical convergence zone (TCZ) between one continental and an equatorial Indian Ocean position. The 10–20 day mode has maximum amplitude in the north Bay of Bengal, where it is comparable to that of the 30–60 day mode. Elsewhere in the Indian Ocean, this mode is almost always weaker than the 30–60 day mode. In the Bay of Bengal region, the wind curl anomalies associated with the peak phases of the ISOs could be as large as 50% of the seasonal mean wind curl. Hence, ISOs in this region could drive significant ISOs in the ocean and might influence the seasonal mean currents in the Bay. On the interannual time scale, the NCEP/NCAR reanalysed wind stress is compared with the Florida State University monthly mean stress. The seasonal mean stress as well as interannual standard deviation of monthly stress from the two analyses agree well, indicating absence of any serious systematic bias in the NCEP/NCAR reanalysed winds. It is also found that the composite structure of the 30–60 day mode is strikingly similar to the dominant mode of interannual variability of the seasonal mean winds indicating a strong link between the ISOs and the seasonal mean. The ISO influences the seasonal mean and its interannual variability either through increased/decreased residence time of the TCZ in the continental position or through occurrence of stronger/weaker active/break spells. Thus, the ISOs seem to modulate all variability in this region from synoptic to interannual scales.  相似文献   
107.
梅雨期高层流场对低层急流及中尺度系统影响的数值试验   总被引:3,自引:1,他引:3  
翟国庆  高坤  孙淑清 《气象学报》1997,55(6):714-725
用中尺度模式对一次江淮流域暴雨过程进行了数值试验,并研究了对流层高层青藏高压东侧偏北大风的强弱与低层流场及中尺度系统发生及至降水过程的影响。试验不仅较成功地模拟了本次暴雨过程及相应的系统,而且揭示出较强的高空偏北大风将引起对低空急流的加强。而更为重要的是低层切变线的出现以及其上中尺度涡旋的发生。上下风场所构成的垂直反环流圈大大有利于对流的发展,特别是在切变线地区的上升支,带有明显的中尺度特征。  相似文献   
108.
Nimbus 7 LIMS geopotential height data are utilized to infer the rotational wind distribution in the Northern Hemisphere stratosphere and lower mesosphere during a period of substantial wave-mean flow interaction in January, 1979. Rotational winds are derived from the application of a successive relaxation numerical procedure which incorporates the spherical polar coordinate iterative algorithm ofPaegle andTomlinson (1975) for the nondivergent nonlinear balance equation. Optimum convergence of the numerical solutions is found to occur when under-relaxation is utilized. The LIMS height analyses were also latitudinally smoothed and constrained to obey the ellipticity criterion for spherical coordinates. The balanced winds are compared with geostrophically derived values and within situ radiosonde reports for 100 mb to 10 mb over Berlin.From a localized perspective, the Berlin-LIMS comparison indicates that radiosonde and balanced wind vectors exhibit somewhat closer agreement in direction than is associated with the geostrophic estimates. However, substantial quantitative differences between radiosonde, balanced, and geostrophic wind speeds are also evident, suggesting that caution should be exercised in the local application of derived winds, as for example in the quantitative interpretation of trajectories derived from satellite height analyses during periods of enhanced stratospheric wave activity.On a longitudinally averaged basis, balanced zonal-mean wind speeds are typically 20% weaker than geostrophic values in polar latitudes, and as much as 50% weaker in tropical and midlatitude regions. Meridional balanced wind velocities, at a given longitude, are generally within ±10% of geostrophic values. Although these alterations in horizontal wind components result in only modest differences between balanced and geostrophic meridional eddy heat fluxes, a more substantial change appears in the meridional eddy momentum flux analysis. The corresponding patterns of Eliassen-Palm flux divergence are found to be somewhat more (less) intense for the balanced wind case in the stratosphere (lower mesosphere) in polar latitudes.  相似文献   
109.
本文利用欧洲中期天气预报中心(ECMWF)的ERA-Interim再分析数据、美国国家航空航天局(NASA)提供的对地观测系统的数据信息系统(EOSDIS)极轨卫星云图和气象卫星合作研究所(CIMSS)提供的GOES-EAST红外卫星云图等资料,对2006年12月23日—27日发生在东北太平洋上的一个爆发性气旋进行了初步分析,探讨了动力、热力因子在气旋爆发性发展过程中的作用,分析了高空急流、低空急流、位势涡度(PV)和水汽通量等物理量对爆发性气旋发展的影响。分析发现,在初始阶段,高空急流已经建立,高层的PV大值位于地面气旋上游,高层系统发展强盛,但低空急流较弱。冷锋后下沉运动区域内,高空动量下传促使低空急流逐渐加强,低空急流将暖湿空气输送到气旋内部,对气旋发展有促进作用。高低空共同作用促使爆发性气旋发展。  相似文献   
110.
The variability of the sea surface wind and wind waves in the coastal area of the Eastern Tsushima Strait was investigated based on the hourly data from 1990 to 1997 obtained at a station 2 km off Tsuyazaki, Fukuoka. The annual mean wind speed was 4.84 m s−1, with strong northwesterly monsoon in winter and weak southwesterly wind in summer. Significant wave heights and wave periods showed similar sinusoidal seasonal cycles around their annual means of 0.608 m and 4.77 s, respectively. The seasonal variability relative to the annual mean is maximum for wave heights, medium for wind speeds, and minimum for wave periods. Significant wave heights off Tsuyazaki turned out to be bounded by a criterion, which is proportional to the square of the significant wave period corresponding to a constant steepness, irrespective of the season or the wind speed. For terms shorter than a month, the significant wave height and the wave period were found to have the same spectral form as the inshore wind velocity: white for frequencies less than 0.2 day−1 and proportional to the frequency to the −5/3 power for higher frequencies, where the latter corresponds to the inertial subrange of turbulence. The spectral levels of wave heights and wave periods in that inertial range were also correlated with those of the inshore wind velocity, though the scatter was large. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号