首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   8篇
  国内免费   48篇
大气科学   56篇
地球物理   2篇
地质学   4篇
海洋学   10篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
21.
吕心艳  许映龙  董林  高拴柱 《气象》2021,47(3):359-372
利用1949-2018年中国气象局台风最佳路径、2018年中央气象台的台风路径强度实时预报、ECMWF数值预报以及NCEP逐日高分辨率海温RTG_SST(0.083°×0.083°)等资料,对2018年西北太平洋台风活动的主要特征和预报难点进行了分析.结果 表明:2018年台风生成频数偏多,生成源地偏东,南海台风活跃;...  相似文献   
22.
相同强度双台风相互作用的物理机制   总被引:1,自引:1,他引:1  
在无基本气流的假定下,应用无辐数正压模式研究双台风相互作用的物理机制。台风A位于观风B以西,两台风相距60km,且具有相同的强度。在台风A(台风B)的非对称流场中,由台风A(台风B)的线性β效应产生的非对称涡旋的方位相位与由台风B(台风A)形成的非对称涡旋方位相位相反(相同)。因此,台风A(台风B)的大尺度非对称涡旋较弱(较强)。小尺度涡旋逆时针旋转导致台风A逆时将打转。稳定的偏南非对称气流使台风  相似文献   
23.
利用高分辨率f平面正压拟谱模式,分析一个β中尺度涡对双台风相互作用影响的物理过程。结果表明:β中涡的存在可以使原本排斥的两个DeMaria型台风涡旋合并;β中涡改变双台风相互作用终态的物理机制是:初始时段处于某一台风涡旋正影响区内的β中涡,构成了非对称涡度场,进而在该台风涡旋内部产生指向另一个台风涡旋的气流。该气流如果足够强,则会使两个台风的中心距离在短时间内下降到合并临界距离之内,触发双涡合并过程的发生。  相似文献   
24.
双台风相互作用的数值研究   总被引:6,自引:3,他引:6  
无基本气流的情况下,应用无辐散正压模式对初始呈西北-东南等方位的双台风相互作用进行数值研究,探讨了非对称理论在双台风相互作用中的应用。试验结果表明:双台风的运动特征能够运用非对称理论进行解释;非对称流函数场中,通风气流分别控制着双台风的移动,同时双台风的移动对其对应的非对称结构具有反作用。试验还表明,台风非对称结构内小尺度涡旋的强度及其绕台风中心逆时针旋转的快慢与台风路径的摆动关系密切:模式可以模拟出台风逆时针打转、“蛇形”摆动等异常移动路径。  相似文献   
25.
利用常规观测、自动气象站、多普勒雷达等资料分析珠江三角洲台风龙卷的活动特征及其产生的环境条件。结果表明:台风龙卷发生在6—10月,时间多为10—20时,出现在台风登陆后1.3~21.3 h的时段内;多数龙卷位于台风中心的东北象限,台风中心在广东湛江一广西东南部或北部湾附近时是珠江三角洲龙卷发生的高风险期。高层辐散、低层辐合及中低空强东南急流在珠江口附近叠加是龙卷产生的有利环流背景。强或弱龙卷环境条件的共同特征为低抬升凝结高度、强深层和低层垂直风切变及较大风暴相对螺旋度(SRH),主要差异是强龙卷的深层和低层垂直风切变与SRH更大;相似台风路径下,有/无龙卷环境条件的明显差异在于0~1 km低层垂直风切变和SRH,两值越大出现超级单体或中气旋的可能性越大,龙卷发生概率也就越高。台风龙卷风暴母体属于低质心的微型超级单体风暴;低层有强或中等强度中气旋,有时强中气旋中心伴有龙卷涡旋特征(TVS);龙卷出现在钩状回波顶端或TVS附近。与西风带超级单体龙卷相比,台风龙卷中气旋的尺度更小、垂直伸展高度更低。  相似文献   
26.
针对变性台风的结构特征和Bogus 方案的局限性,提出了一种新的基于位涡反演技术的台风初始化方案。实际应用效果表明,该变性台风初始化方案既能使初始场中的台风中心位置和强度与观测相吻合,又能维持变性台风的结构特征(斜压性和不对称性),同时能保证初始场中各要素场之间的协调一致性。数值试验结果表明,采用该方案后,在数值模拟的前24 小时对台风中心强度和移动路径的模拟效果有较明显改进。   相似文献   
27.
To improve understanding of essential aspects that influence forecasting of tropical cyclones (TCs), the National Key Research and Development Program, Ministry of Science and Technology of the People’s Republic of China conducted a five-year project titled “Key Dynamic and Thermodynamic Processes and Prediction for the Evolution of Typhoon Intensity and Structure” (KPPT). Through this project, new understandings of TC intensification, including outer rainband-driven secondary eyewall formation and the roles of boundary layer dynamics and vertical wind shear, and improvements to TC data assimilation with integrated algorithms and adaptive localizations are achieved. To promote a breakthrough in TC intensity and structure forecasting, a new paradigm for TC evolution dynamics (i.e., the correlations, interactions, and error propagation among the triangle of TC track, intensity, and structure) is proposed; and an era of dynamic-constrained, big-data driven, and strongly coupled data assimilation at the subkilometer scale and seamless prediction is expected.  相似文献   
28.
有些南海弱台风在登陆广东时,由于路径复杂、移动缓慢,会对广东地区造成较长时间和较大范围的风雨灾害。使用双偏振雷达对2018—2020年登陆广东的南海弱台风分析,发现南海弱台风在登陆前强降水区主要有两个:一个是位于海上的台风中心南侧眼墙的降水区,另外一个是在台风移动方向的右前方,台风螺旋雨带上岸的区域。在眼墙中,ZH和KDP的大值区在低层同位相,ZDR大值区位于偏上风方向,降水粒子在移动的右侧开始激发,移动的右侧至右前侧为浓度较大的小粒子降水,而右侧和右后侧为大粒子降水。而且台风降水粒子在海洋和陆地有明显差异,陆地由于地形摩擦和抬升作用,降水粒子浓度较大,但水汽和能量供应不足,降水粒子直径较小;海面由于水汽和能量供应充足,对流发展较高,主要为大雨滴的对流降水,但降水粒子浓度不及陆地。   相似文献   
29.
高拴柱  董林  许映龙  钱奇峰 《气象》2018,44(2):284-293
利用历史台风最佳路径资料、2016年台风最佳路径实况和中央气象台台风路径强度实时预报资料,以及ECMWF数值预报和集合预报产品,对2016年西北太平洋台风活动的主要特征和预报难点进行了分析,结果表明:1—6月的淡季空台风和盛夏秋季多台风现象均与2016年〖JP2〗赤道海温由厄尔尼诺向拉尼娜转换有关;长时效路径预报误差有时异常偏大,可能与集合预报产品的发散度很大有关,但是如果能够掌握数值天气预报对大尺度天气系统预报的系统性偏差,也可以做出精度更高的预报;24 h强度预报误差超过了5 m·s-1,这种现象在过去十多年的业务预报中并不多见,个别最大误差竟达20~26 m·s-1。〖JP〗强度预报的大误差与强度预报中没有定量产品可供参考有关,定性地分析台风强度变化规律对于提高强度预报作用很小,所以急需建立和发展定量和精细化的强度预报方法。  相似文献   
30.
Climatic characteristics of China-influencing typhoons (CIT) were analyzed in this paper. Main characteristics include: (1) CIT season is May-November, especially from July to September. (2) Frequency of the CIT shows a decreasing trend during 1951-2004, especially after the late period of the 1960s. (3)Strong CIT also shows an obvious decreasing trend. Meanwhile, there exist obvious interdecadal variations in the CIT genesis, being more southward and eastward than normal in 1960s-1970s, and more northward and westward than normal in the 1980s. In addition, the interrelations between CIT and its environmental factors show that CIT has close relationships with sea surface temperature and East Asian summer monsoon; the structure of the circulations in frequent CIT years is much different from that in infrequent CIT years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号