首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   26篇
  国内免费   46篇
测绘学   30篇
大气科学   136篇
地球物理   21篇
地质学   7篇
海洋学   8篇
天文学   1篇
综合类   21篇
自然地理   3篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   11篇
  2015年   13篇
  2014年   8篇
  2013年   10篇
  2012年   5篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   8篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  2000年   9篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
151.
Six years of observations (1980 to 1986) of the composition of lower tropospheric aerosols at Alert on northern Ellesmere Island in the Canadian high Arctic yield insight into the seasonal variation of Arctic air pollutants as well as of substances of natural origin. A principal component analysis of 138 observations of 21 aerosol constituents (major ions, metals, nonmetallic trace elements) for the most polluted period of December to April identified not only a soil, sea salt and anthropogenic aerosol component, but also one associated with photochemical reactions in the atmosphere that occur at polar sunrise. Depending on the source of their gaseous precursors, elements in the photochemical component can be natural or anthropogenic in origin. For instance, SO4 2-, existing mostly as H2SO4, originates probably from both anthropogenic and natural sources while Br is likely of marine origin. In contrast, SO4 2- in the anthropogenic component has the stoichiometry of NH4HSO4. In the winter months, over 90% of Arctic SO4 2- is in the anthropogenic and photochemical components.In winter, a substantial portion (11 to 35%) of Na+ is associated with the anthropogenic aerosol component suggesting either that marine aerosols have been physically or chemically modified by interactions with air pollution or that there are anthropogenic sources of Na+.The aerosol soil component is controlled by both local and distant dust sources. During a year, it has two peaks at Alert, one in April/May coinciding with the Asian dust storm season and one in September.There is a marked difference in the seasonal variation of particulate Br and iodine concentrations in the air. Both have a peak in April/May associated with polar sunrise and, hence, photochemical reactions in the atmosphere. However, iodine also peaks in early fall. This may be a product of biogenic iodine emissions to the atmosphere during secondary blooms in northern oceans in late summer.Presented at the Second Conference on Baseline Observations in Atmospheric Chemistry (SABOAC II) in Melbourne, Australia, November 1988  相似文献   
152.
A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.  相似文献   
153.
Meridional cross sections of the concentration of light hydrocarbons are reported. They were obtained from 20. April to 10. May, 1980, during the French research flight STRATOZ II, and cover the latitudes between 60° N and 60° S and the altitudes between 800 mb and 200 mb. The mixing ratios of ethane, ethene, acetylene, propane, propene, n-butane, i-butane, n-pentane, and i-pentane range between 2.0 and 0.02 ppb. Globally, a decrease in concentration with increasing altitude and -in most cases-with decreasing latitude is observed. In addition the 2-dimensional concentration fields show structures of different scales. In particular, isolated maxima of high concentrations are found in the upper troposphere. They point to fast vertical transport between the boundary layer and the upper troposphere. In the present case these maxima seem to be correlated with large scale meteorological systems, such as low pressure regions or the Inter Tropical Convergence Zone. It is argued that the NMHC provide a set of tracers well suited to the detection of fast vertical transport.  相似文献   
154.
Calculated and observed hydroxyl (OH) fields are presented. Calculated OH was obtained in three ways using (1) a photochemical box-model (2) a simple OH steady state approach and (3) a variant on (2) – the multiple equation steady state approach which assumes steady state for OH, HO2 and RO2 and hence obtains three simultaneous, non linear, equations. All three methods used data collected in June 1995 during the Weybourne Atmospheric Observatory Summer Experiment (WAOSE'95). Julian Days 169, 178, 179 and 180 displayed especially good data capture and were consequently chosen for study. The two steady state methods are essentially driven purely by observations and derive OH from the ratio of the relevant source and sink terms. The box-model was constrained where possible to observations; remaining unmeasured volatile organic compounds (VOCs) were initialised to an arbitrary low value of 10 ppt. Agreement between theory and experiment was usually around 50% and often better than this value, especially on J169, though discrepancies of up to a factor of 3 were occasionally apparent. Despite the inherent scatter, neither the box-model nor the simple steady state method were found to consistently over-estimate OH (a common feature of many numerical approaches) although this did occur to a certain extent using the multiple equation steady state approach, probably due to breakdowns in the steady state approximation. More data spread was evident in the box-model approach compared with the other methods. An analysis of the major sources and sinks of OH is presented for the three methods of calculation. Calculated and observed peroxy radicals are also presented. Calculated peroxy radicals were generally lower than that observed at night yet higher, sometimes by up to a factor of 7, during the day. Possible explanations for this result are explored.  相似文献   
155.
GPS对流层延迟改正UNB3模型及其精度分析   总被引:4,自引:0,他引:4  
就GPS对流层延迟改正UNB3模型的天顶延迟模型和Niell映射函数模型进行了详细的探讨,采用C 语言编程,建立了相应的程序模块;在GPS普通单点定位中,比较分析了UNB3模型的修正精度;通过IGS跟踪站的大量数据分析计算表明,UNB3天顶延迟模型的修正精度在平面x、y方向上与Saastamoinen天顶延迟模型相当,在高程H方向上优于Saastamoinen天顶延迟模型.  相似文献   
156.
With the EOF of reanalysis data being analyzed, a northern- southern dipole is found in the upper troposphere geopotential height field of over the Asian-Australian monsoon region in the winter of the Northern Hemisphere (NH), which is defined as Asian-Australian dipole (AAD) in this study. Its intensity index is defined as AADI. Correlation and synthetic analysis illustrate that AADI is closely related to the weather and climate of Asian-Australian region in boreal winter. The index can reflect the simultaneous anomalies of temperature and precipitation on interannual and decadal scales in the boreal winter of Asian-Australian region. The superposition of the decadal and interannual signals is significant for the relationship between the AADI and climate change. The index can be used as an indicator of intensity of the Asian-Australian monsoon. In the years of strong AADI, the East Asia major deep trough is stronger, the Subtropical High is weaker and the Alaska ridge and the westerly jet are stronger than those in normal years. Enhanced meridional circulation between high and low latitudes exists in the years of strong AADI. These relationships reflect the intrinsic link between the anomalies in the upper troposphere geopotential height and climate in the Asian-Australian region.  相似文献   
157.
In situ measurements of the vertical structure of ozone were made in Changchun(43.53?N, 125.13?E), China, by the Institute of Atmosphere Physics, in the summers of 2010–13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere(UTLS) caused by cut-off lows(COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed.Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere–troposphere exchange(STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause(LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere(LS) column ozone is-0.62,which implies a positive correlation between COL strength and LS ozone concentration.  相似文献   
158.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   
159.
我国对流层臭氧增加对气温的影响   总被引:5,自引:1,他引:5  
利用耦台的区域气候模式和大气化学模式模拟对流层臭氧的产生、分布和对辐射传输、地表温度、气温等的影响。通过对比模拟发现:对流层中臭氧的增加基本使大气顶晴空辐射强迫为正;对流层中的臭氧含量变化能影响云量且进一步影响温度。由于对流层臭氧增加导致的晴空辐射强迫在4月份最大、1月份最小。  相似文献   
160.
利用欧洲中心ERA-Interim再分析资料,对"05·6"华南持续性暴雨发生前上对流层及平流层信号进行分析。分析结果表明,暴雨发生前一周,暴雨区域上空对流层顶高度出现先降低后升高再降低的变化,这种变化与日本南部的位涡异常存在较好的对应关系,即我国中纬度沿海一带至日本的高位涡带向华南延伸,使得华南地区上空的位涡升高,对流层顶下降。在环流场中,本次暴雨发生前低纬地区上对流层下平流层(UTLS)区域的东风与1991~2010年平均值相比偏强偏北,华南地区上空平流层东风场也偏强,平流层低层东风在暴雨发生前第9天提早向下传播;位势高度场中,"05·6"华南暴雨发生前中低纬度100 hPa上的南亚高压中心位置偏东偏南;华南地区UTLS区域有较强的位势高度场正异常,在暴雨发生前随时间出现两次明显的加强,但在暴雨发生后减弱。南亚高压中心位置的偏移、东风信号的提早下传、高位涡空气入侵华南均有利于降水的发生。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号