首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   55篇
  国内免费   70篇
大气科学   217篇
地质学   3篇
海洋学   34篇
综合类   1篇
自然地理   17篇
  2024年   7篇
  2023年   13篇
  2022年   11篇
  2021年   18篇
  2020年   22篇
  2019年   24篇
  2018年   16篇
  2017年   15篇
  2016年   7篇
  2015年   4篇
  2014年   15篇
  2013年   10篇
  2012年   16篇
  2011年   10篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   10篇
  2006年   15篇
  2005年   8篇
  2004年   6篇
  2003年   10篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1993年   1篇
排序方式: 共有272条查询结果,搜索用时 0 毫秒
121.
湖北三类组织形态强对流系统造成的地面强对流大风特征   总被引:1,自引:0,他引:1  
郭英莲  孙继松 《大气科学》2019,43(3):483-497
利用湖北省2012~2017年区域自动站、天气雷达和周边探空站观测资料,对三类不同组织形态的中尺度对流系统(Mesoscale Convective System, MCS)(线性MCS、非线性MCS和孤立对流风暴)造成的地面强风(极大风速≥17 m/s)的时空分布、移动与传播、对流环境特征等方面进行了统计对比分析,并结合个例讨论了地面入流大风的成因及其对对流系统发展、组织的影响。结果表明:(1)大量的非线性MCS可能是由更早发生在山区和丘陵的孤立对流风暴向平原地区移动过程中组织形成的,孤立对流风暴造成的地面大风出现的峰值时间在17:00(北京时,下同)前后,非线性MCS地面大风的峰值时间在19:00左右;线性MCS造成的强对流大风主要出现在平原地区。(2)非线性MCS和孤立对流风暴是造成湖北省地面大风的主导系统,其中,非线性MCS造成的地面大风站次数占强对流大风站次总数的41.9%,而39.3%的地面强对流大风站次是由孤立对流风暴造成的。(3)虽然大于17 m/s的地面入流大风占所有强对流大风的比例很小,但存在地面入流大风的强对流系统的影响范围、持续时间均远大于同一类型对流系统的平均值。基于一次长生命史线性MCS(飑线)造成强对流大风事件的分析表明:雷暴系统前侧的地面入流大风是由对流强烈发展造成,这支暖湿入流又进一步增强了对流风暴的发展,同时地面入流大风的形成进一步加强了垂直风切变,因而强的地面入流更有利于对流系统的组织化发展。(4)虽然暖季强对流系统的平均引导气流均以西南风为主,但线性MCS主要自西向东移动、非线性MCS以自西南向东北移动为主、孤立对流风暴的移动方向则更具多样性,也更易出现后向传播现象。孤立对流风暴相对组织化的强对流系统而言,往往发生在更不稳定或更干的层结大气中,且环境垂直风切变更弱、风速更小。  相似文献   
122.
韩乐琼  何晓凤  张雪松  肖擎曜  陈笑 《气象》2023,49(12):1542-1552
以如东海上风电场升压站激光雷达测风资料为基础,提出了一种强风事件识别方法,设计并比较了三种预报强风事件识别方案。基于决策树和一元线性回归方法,分别开展了针对强风事件的订正方法研究。结果发现:三种预报强风事件识别方案中,等分位阈值方案明显更优,事件命中率达到76.1%,匹配时长命中率达到87.6%;采用消偏阈值方案和等分位阈值方案预报的强风事件时长会更接近观测强风事件时长;等分位阈值方案识别的事件基本可以覆盖到各次观测强风事件的全程;两个订正模型相对于模式预报都有一定提升与改进,其中决策树比一元线性回归模型更优,其平均绝对误差、相对误差和均方根误差明显更小。  相似文献   
123.
利用冀东油田作业海区2013年12月—2014年11月的观测数据,分析了东、西、南部海区的大风特征,对产生大风的天气形势作了分型,并针对风、浪的专业站点观测值和现场人工经验观测值之间的差异作了对比分析,提出了释用方法。结果表明:(1)南部海区年大风日数最多,约为150 d,西部海区最少,约为100 d;(2)大风的季节性分布整体呈两峰两谷的趋势,5、11月是大风日数最多的月份;(3)各海区大风风向均以NW、WNW和ENE、E为主导风向,呈现出非常明显的"极端化"分布;(4)低槽冷锋是产生大风日数最多的天气系统,约占所有个例的一半;(5)专业自动站观测的风力均比现场人工经验观测的风力小,可提高1~3个等级后用于实际作业,自动观测的浪高普遍比人工观测的浪高小,可通过增加修正值或使用线性关系式予以运用。  相似文献   
124.
利用常规气象探空观测、地面自动气象站逐分钟观测、风廓线雷达以及多普勒天气雷达等多源观测资料,分析了2021年4月30日傍晚到夜间浙江北部和杭州湾沿海地区一次区域性极端大风的天气特征,重点探讨了对流系统移入杭州湾后的中尺度演变特征和大风增强的原因。结果表明,此次过程是典型的多尺度相互作用的结果,在高空深厚的东北冷涡影响下,配合中层西北急流和较强的地面暖低压促使飑线后部对流系统发展,形成雷暴大风天气。对流单体在经过杭州湾水系后明显增强,其阵风锋前侧有西南暖湿入流,后部冷池发展强盛,气压涌升,叠加地面环境风场和杭州湾水面的热动力条件,从而触发不稳定能量促使单体发展。系统经过杭州湾后辐散下沉出流明显增强,将中高层的动量更快地下传至地面,对于杭州湾南部风力增强效应显著。杭州湾光滑下垫面、喇叭口等特殊地形也是造成极端大风出现的原因之一。同时,逐分钟变温相比于极大风出现时间提前了约7~10 min,对于局地极端大风监测预警有一定的指示意义。  相似文献   
125.
冷空气引发江苏近海强风形成和发展的物理过程探讨   总被引:8,自引:1,他引:7  
对一次强冷空气伴随的近海大风天气进行了分析,研究了强冷空气影响过程中地面变压场和高空各层温度平流场的演变特征及其与地面风场之间的关系,在此基础上对强冷空气引发江苏近海强风形成与发展的物理过程进行了探讨,研究表明:温度平流与地面风场之间是通过变压场相互关联和促进的,强冷空气所伴随的冷平流增强了地面变压场及变压梯度,是导致江苏近海大风出现的重要原因。  相似文献   
126.
陈淑琴  黄辉 《气象科技》2007,35(3):383-386
对比分析了2004年发生在舟山的两次相似的强对流天气过程,不同在于一次过程强降水特别突出,一次过程强风特别突出。通过对两次过程反射率因子、径向速度以及一些二次产品的对比分析,找出了一些相同点和不同点。组织结构性好的强回波、速度产品中的大风区、垂直风切变、较高的顶高和大的VIL值等是产生雷雨大风和短时强降水天气的共同特征。回波移速较慢的易产生强降水,回波移速快的易产生强风。强风天气的回波强度、顶高和VIL等产品都有更强的表现。低层水平风的辐合、中气旋、垂直风向切变等可以产生强降水,中高层的中气旋、垂直风切变可以产生下击暴流、冰雹等强对流天气。  相似文献   
127.
江苏盐城8.17雷雨大风天气过程雷达回波特征分析   总被引:4,自引:8,他引:4  
本文分析了2005年8月17日江苏盐城地区的一次雷雨大风天气过程(简作8.17雷雨大风)的雷达回波特征。分析表明:贝湖东侧有较强的冷涡,高空槽前有西南急流存在,低层有冷锋锋区南压,本地受减弱缓慢南撤的副热带高压控制,850 hPa为暖湿气流控制;K指数、SI指数和θse都表明有较强的不稳定天气产生;在雷达回波特征上,具有强冷锋带状回波特征;风场上有明显的辐合;液态含水量值和一小时累积降水量有较好的指示作用。切变线和辐合区的存在是强回波得以维持和发展的主要原因。冷空气的入侵,冷暖空气交汇,是强对流天气爆发的直接原因。及时利用新一代天气雷达信息,进行预警信号的发布工作,取得了非常好的效果,并得到社会公众的认可。  相似文献   
128.
2021年夏季(6—8月)大气环流特征为:北半球极涡呈单极型分布,主体位于北冰洋上空偏向西半球,强度较常年偏强;东亚地区以纬向环流为主,副热带高压较常年平均略偏西偏南。6月,北部海域温度较低,黄渤海海雾天气多发。7月,西南季风推进,热带气旋活跃。8月,副热带高压增强西伸,热带气旋活动频次偏少。夏季共有7次海雾过程,其中6月有4次,7月有3次。我国近海出现了9次8级以上大风过程,其中热带气旋大风过程6次,温带气旋入海影响的大风过程3次。浪高在2 m以上的海浪过程有10次,2 m以上大浪的天数共计38 d。我国北部及东部海域升温明显,从北到南的海面温度梯度减小。西北太平洋和南海有9个台风活动,其中台风“烟花”造成近海一次范围广、时间长、风力大的大风过程。  相似文献   
129.
宋雯雯  师义成  陶丽  郑昊 《气象科技》2024,52(3):446-455
在复杂地形、副热带高压和季风天气等因素共同影响下,高山峡谷区内风场复杂多变,极易形成“狭管效应”,进而导致灾害性大风,对大型工程施工与运行造成较大影响。本文基于流体力学基本原理,采用标准k-ε紊流模型以及PISO(Pressure Implict with Splitting of Operator)算法,以白鹤滩水电站区域发生7级北风为典型计算工况,研究了大坝建坝过程中近坝区风速场变化规律和建坝对风速场的影响范围。成果表明:坝体的阻挡作用使风速场在坝顶处产生绕流分离和风场抬升,在建坝高程以下形成低风速区;建坝高程650 m与750 m时,缆机平台范围内风速约15~16 m/s,大坝下游风速垂直分布显著影响区河道长度分别为4.4Ht和4.5HtHt为建坝高度);坝顶处风速场显著影响高度分别为2.0Ht和3.0Ht。大坝蓄水至正常蓄水位825 m高度时,大坝下游风场显著影响区河道长度为8.0倍坝高(2.3 km),最大影响河道区长度为30.4倍坝高(8.8 km);坝顶影响高度达到1500 m高度左右,约3.5倍坝高。  相似文献   
130.
利用ECMWF细网格数值预报产品和区域自动站、风廓线雷达等常规观测资料,对乌鲁木齐2013年春季南郊发生的一次东南大风过程进行诊断分析和预报释用,揭示了乌鲁木齐东南大风发生和维持的物理机制,发现细网格资料在预报时空分辨率和预报性能等方面均有提高,对东南大风预报具有指示意义,提高了预报的准确性。分析表明:达坂城至南郊一带东南风频发是由于春季地面蒙古高压部分南掉,形成东西间气压梯度力同乌鲁木齐南郊地形狭管方向一致时,并在“慢坡”重力下滑的共同作用下所形成的回流型东南大风;细网格850hPa风矢量、10m高度上的风、海平面气压场、2m高度上的温度等要素预报,对乌鲁木齐南郊东南大风的起止时间、风速量级及落区的预报有较好指示意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号