首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   30篇
  国内免费   65篇
测绘学   13篇
大气科学   153篇
地球物理   37篇
地质学   19篇
海洋学   14篇
天文学   4篇
综合类   12篇
自然地理   32篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   11篇
  2019年   11篇
  2018年   14篇
  2017年   10篇
  2016年   8篇
  2015年   15篇
  2014年   8篇
  2013年   20篇
  2012年   17篇
  2011年   12篇
  2010年   5篇
  2009年   10篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有284条查询结果,搜索用时 31 毫秒
191.
The effect of long-term (11-year solar cycle) solar UV variability on stratospheric chemical and thermal structure has been studied using a time-dependent one-dimensional model. Previous studies have suggested substantial variations in local and total ozone, and in stratospheric thermal structure from solar minimum to solar maximum. It is shown here that significant variations also occur in some of the trace constituents. Members of the HO x family and N2O exhibit the largest variations, and these changes, if detected, may provide additional means of verifying the presence of solar UV variability and its effects. Some of the species show large phase differences with the assumed solar flux variation. The role of chemical and transport time constants on the time variations of the trace species is examined. Comparisons with reported ozone and temperature data show reasonable agreement for the period 1960 to 1972.  相似文献   
192.
Daily ozone soundings over Switzerland in the winter of 1979 showed, at the end of January some extremely high values of the ozone mixing ration around the 10 mb level-9 to 10 ppm compared with a climatological mean of 6 ppm. At the same time, the temperature and ozone mixing ratio was measured by the LIMS experiment (Limb Infrared Monitor of the Stratosphere) on Nimbus 7. The single LIMS ozone profiles, as well as the LIMS 10 mb ozone maps, also showed extreme ozone maxima. Ozone transport was investigated by trajectory computations based on the LIMS geopotential height fields. Displacements and deformations of air parcel chains in 48 h were used to construct ozone maps, using the distribution on a previous day. The correspondence of such kinematically-constructed ozone maps using the actual LIMS maps is striking. This method is, thus, a strong indication of the self-consistency of the different LIMS products (ozone, temperature, geopotential) and explains the unusual ozone observations.  相似文献   
193.
During a series of flights in the winters 1991/92 to 1994/95 total stratospheric NO2 was measured by means of the DOAS (Differential Optical Absorption Spectroscopy) technique on board a C160 (Transall) aircraft. In an area covering 60°W to 60°E, and 16°N to 86°N, the total stratospheric NO2 was observed to vary markedly with latitude and season (winter and spring). In the mid-winter Arctic vortex extremely low total stratospheric NO2 (< 3.1014/cm2) was always found, generally larger amounts of NO2 occurred outside the vortex in winter and towards the spring both inside and outside the vortex. This behaviour of stratospheric NO2 can be explained by the denoxification of the wintertime polar stratosphere. Ambient to the vortex in mid-winter however, sudden increases of total stratospheric NO2 by about a factor of 3 were observed. These sudden increases in stratospheric NO2 coincide with a change in the wavenumber 2 of the geopotential height at 60°N, which indicates that most likely the events are caused by planetary waves efficiently transporting air masses rich in NOx from lower to higher latitudes. The monitoring of stratospheric NO2, during latitudinal traverses ranging from the Arctic (80°N) to the Subtropics (18°N) in spring also unexpectedly showed a large variability in total stratospheric NO2 at mid-latitudes. Since photochemistry almost certainly can be excluded, it is proposed that the observed variability may be due to the planetary wave activity of the stratospheric surf zone, known to dynamically connect the tropical and the polar stratosphere.  相似文献   
194.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   
195.
一种众源车载GPS轨迹大数据自适应滤选方法   总被引:1,自引:1,他引:0  
唐炉亮  杨雪  牛乐  常乐  李清泉 《测绘学报》2016,45(12):1455-1463
基于同步高低精度GPS轨迹数据的空间特征和GPS误差分布原理,提出了一种众源GPS车载轨迹大数据自适应分割-滤选模型。该模型首先通过角度、距离约束将完整的车载GPS轨迹数据进行分割,以轨迹分割段作为基本滤选单元;然后通过对比轨迹分割段内GPS轨迹向量与其参考基线间的相似度,按照相似度与GPS定位精度之间的量化关系指导滤选。试验结果表明,该方法可以实现车载轨迹大数据按信息提取精度需求的滤选。  相似文献   
196.
天然河流床沙通常为非均匀沙,准确把握非均匀沙颗粒运动规律是模拟和预测天然河流河床演变的基础。开展了恒定均匀流条件下的非均匀沙推移质运动水槽试验,床沙粒径范围为0.10~20 mm。利用摄像机从顶部拍摄了粗化条件下的推移质颗粒运动,获取大量非均匀沙颗粒的运动轨迹,提取了颗粒运动速度、走停时间等基本运动参数,推移质运动颗粒粒径范围为0.74~8.19 mm。试验结果表明,非均匀沙床面聚集体或大颗粒使推移质颗粒运动方向发生改变,与均匀沙成果相比,非均匀沙推移质颗粒的纵向运动速度减小,横向运动速度增大;推移质颗粒纵向运动速度遵循指数分布,单次运动速度遵循Γ分布,横向运动速度及运动速度矢量角则遵循正态分布。  相似文献   
197.
Gaseous nitric acid (HNO3) and hydrogene fluoride (HF) have been measured in the winter Arctic stratosphere using balloon- and aircraft-based Ion Molecule Reaction Mass Spectrometry (IMRMS) instruments. Strong HNO3 perturbations were found in 1993 and 1995 which may indicate nitrification around 11-13 km and denitrification around 20 km altitude. Most likely these perturbations were caused by sedimentation of HNO3 containing aerosols followed by aerosol evaporation at lower altitudes.  相似文献   
198.
Automatic methods used in geosciences to interpolate between orientation data have often limited applicability and strength, in particular where large ranges of orientations occur. In this paper, we show that geostatistical methods yield rather strong and powerful results when applied to directional data. The procedure involves the calculation of variograms, followed by a kriging interpolation of the data. In order to free from the circular property of directional data, the treatment of initial angular data sets is performed using scalar values provided by the direction cosines of double-angle values. The strength and application of the method are demonstrated by the analysis of theoretical and natural data sets. Natural examples are focused on the calculation and the analysis of cleavage trajectory maps.  相似文献   
199.
All of the techniques used to measure stratospheric HCl during the two BIC campaigns involved high resolution infrared spectroscopy. The balloon-borne instruments included five different spectrometers, three operating in the solar absorption mode and two in emission (at distinctly different wavelengths). Ground-based and aircraft correlative measurements were made close to the balloon locations, again by near-infrared spectroscopy.Within this set of results, comparisons between different techniques (absorption vs emission) viewing the same airmass (i.e., on the same gondola) were possible, as were comparisons between the same technique used on different gondolas spaced closely in time and location. The final results yield a mean profile of concentration of HC1 between 18 and 40 km altitude; an envelope of ±15% centered on this profile encompasses all of the results within one standard deviation of their individual mean values. The absolute accuracy of the final profile is estimated to be no worse than 10%. It is concluded also that the measurement techniques for HCl have reached a level of performance where a precision of 10% to 15% can be confidently expected.  相似文献   
200.
《Comptes Rendus Geoscience》2018,350(7):347-353
After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号