首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   33篇
  国内免费   71篇
测绘学   2篇
大气科学   5篇
地球物理   37篇
地质学   172篇
海洋学   80篇
天文学   4篇
综合类   11篇
自然地理   30篇
  2023年   2篇
  2022年   7篇
  2021年   1篇
  2020年   10篇
  2019年   12篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   13篇
  2014年   13篇
  2013年   14篇
  2012年   5篇
  2011年   18篇
  2010年   12篇
  2009年   20篇
  2008年   20篇
  2007年   22篇
  2006年   17篇
  2005年   22篇
  2004年   12篇
  2003年   6篇
  2002年   19篇
  2001年   12篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1984年   2篇
排序方式: 共有341条查询结果,搜索用时 750 毫秒
221.
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.71 ± 1.79) μmol/L and (0.56 ± 1.41) mmol/L, respectively. Both BSi and LSi were high in the inshore areas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the surface layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm experiments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phosphorus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.  相似文献   
222.
In this study, we demonstrate that dissolved silica obtained from mineral (crystalline quartz), biogenic amorphous (diatomaceous earth) and artificial amorphous sources (Aerosil) influence the growth rate of two marine diatoms, Chaetoceros sp. and Skeletonema marinoi. Diatoms were reared in four different experimental conditions in artificial seawater containing either dissolved silica previously obtained through dissolution of the mineral crystalline quartz or two amorphous substrates, biogenic diatomaceous earth or artificial Aerosil silica. Sodium metasilicate was used as control. When the silica in the different media reached concentrations higher than 107 μm , particles were eliminated by filtration and the diatom cells were inoculated. Maximum cell density, growth and silica assimilation rates of both species in the presence of dissolved silica derived from crystalline quartz and metasilicate were higher than those obtained with the other silica sources. These results are discussed against the background of previous geochemical studies that have shown that silica–water interactions are strictly dependent on the silica polymorphs involved and on the ionic composition of the solution. Our results demonstrate that the soluble silicon compounds generated in seawater by crystalline sources are highly bioavailable compared with those generated by biogenic and amorphous materials. These findings are potentially of considerable ecological importance and may contribute to clarifying anomalous spatial and temporal distributions of siliceous organisms with respect to the presence of lithogenic or biogenic silica sources in marine environments.  相似文献   
223.
224.
渤海颗粒有机碳与生物硅的分布及来源   总被引:2,自引:1,他引:1  
海洋碳、硅循环及其相关联的生物地球化学过程是全球环境变化的热点问题,也是海洋科学关心的重要领域。利用2012年5月和11月份对渤海海域的调查结果,对该海域颗粒有机碳和生物硅的分布特征及来源进行了讨论。主要结论为:渤海有机碳以溶解有机碳为主,具有春季高和秋季低的特征;由陆地来源和海洋自生的有机碳组成,且以海洋来源的有机碳为主。渤海生物硅分布具有明显的梯度特征,河流输入同样对其含量的影响较为突出。渤海沉积物中生物硅含量较高,明显高于中国东部陆架海。渤海表层沉积物中生物硅主要是海源的,依次由浮游藻类、植硅体和海绵骨针所构成,其中浮游藻类占62.9%,陆源植硅体占31.1%。渤海沉积物发现了来自于草本植物的植硅体,这说明了陆地产生的植硅体对海洋生物硅的贡献。  相似文献   
225.
Thermal waters in hydrothermal ponds, bathing pools and the brines of geothermal electric power plants commonly have a characteristic blue color. Although many researchers have assumed that the blue color is due to a colloidal suspension and/or absorption by dissolved ferrous iron or by water itself, there has been no specific effort to identify the physical nature of this phenomenon. We have tested, in synthetic and natural solutions, whether aqueous colloidal silica is responsible for the blue color. Aqueous colloidal silica is formed by silica polymerization in thermal waters of the neutral-chloride type which contain initially monomeric silica in concentrations up to three times above the solubilities of amorphous silica. The hue of the blue thermal waters in the pools tested agrees with that of a synthesized colloidal silica solution. Grain-size analyses of aqueous colloidal silica in the blue-colored thermal waters demonstrate that the color is caused by Rayleigh scattering from aqueous colloidal silica particles with diameters (0.1–0.45 μm) smaller than the wavelengths of visible radiation.  相似文献   
226.
The sorption of Eu species onto nano-size silica-water interfaces is investigated at pH range of 1―8.5 and the initial Eu concentrations (CEu) of 2×10−5, 2×10−4 and 2×10−3 M using fluorescence spectroscopy. The sorption rate of Eu is initially low, but significantly increases at pH > 4. For the initial CEu of 2×10−5, 2×10−4 and 2×10−3 M, the dissolved Eu species are completely sorbed onto silica-water interfaces at pH = 4.75, −5.8 and 6.6, respectively, with the respective sorption densities of −1.58×10−8, 1.58×10−7 and 1.58×10−6 mol/m2. The sorbed Eu species at pH < 6 is aquo Eu3+, which is sorbed onto silica-water interfaces as an outer-sphere complex at pH < 5, but may be sorbed as an inner-sphere bidentate complex at 5 < pH < 6, due to the decrease of the NH2O to −6 at pH = 6. At pH = 6 – 8, Eu(OH)2+, Eu(CO3)+and Eu(CO3)2 form in the solutions, and Eu(CO3)+is dominant at pH = −7.5. These ions may be sorbed onto silica-water interfaces as inner-sphere bidentate complexes or multi-nuclear pre-cipitates.  相似文献   
227.
Summary The kinetics of phytoplankton frustule dissolution has generally been studied as the appearance of silicic acid in a batch reactor. Unfortunately, this approach, though often illuminating, has not so far been successful because of the difficulty of parameterising the full reaction curve. This current study shows how the initial rate approach to chemical kinetics offers a way around this bottleneck, thereby allowing much chemical kinetics information about frustule dissolution to be collected. The technique is shown to be flexible and suited to short reaction times which facilitate detailed quantitative kinetics investigation, indeed, as would be expected in a solution phase, kinetics study. The technique is exemplified by a dissolution study of uncleaned frustules of Cyclotella crypticaat 40 °C and above. The frustules were found to yield the same dissolution rate after 5 weeks dark storage, at 4 °C. Meanwhile, log dissolution rate was found to vary linearly with pH, with gradient 0.38 ± 0.01 (r 2=0.990). Linearity was upheld even at pHs as high as 14. Finally, a robust Arrhenius plot was established between 40 and 90 °C yielding an activation energy for dissolution of 84 ± 3 kJ mol −1. Follow through with the Eyring equation yielded an activation enthalpy, ΔH , and an activation entropy, ΔS , of 81 and 85 J mol −1K −1, respectively. The discussion brings salient aspects of existing knowledge about diatom frustule dissolution kinetics into the wider context of silicate mineral dissolution.  相似文献   
228.
Sedimentary cores BDP 96 and 98 and VER 96-2 St. 3 from Academician Ridge in Lake Baikal were investigated to investigate the effect of climatic fluctuations on rock weathering and clay formation in the Baikal drainage basin. Illite, smectite, vermiculite, and kaolinite were identified as the major clay minerals in the sediments by X-ray diffraction analysis. Biotite in gravels in alluvial soils of the Baikal drainage area weathers through illite to vermiculite, smectite, and finally to kaolinite. To investigate the relationship between weathering and climate, we measured the clay content and the concentration of biogenic silica in the sediments. High surface productivity (increased biogenic silica) and high chemical weathering (decreased clay content) occurred simultaneously, showing that crustal weathering and soil formation were enhanced under warm climatic conditions.Clay formation was enhanced in the watershed from the Late Miocene to the Middle Pliocene, and mechanical weathering of rocks increased during glacial intervals after the climate began to cool in Late Pliocene time. This change in the weathering mode in the watershed reduced the nutrient flux and aquatic productivity of Lake Baikal.  相似文献   
229.
The behaviour of dissolved silica was studied in Tokyo Bay during six surveys in 1979 and 1980. The data from late spring and mid-summer samples showed concave mixing curves of silica versus salinity, whereas for the winter samples a simple conservative dillution curve was obtained. Plots of particulate silicon to particulate aluminium showed that even for winter samples as well as summer ones there were some processes removing silica from solution. The processes could not be adequately explained by adsorption onto suspended solids. The data are indicative of uptake by diatoms as the principal removal mechanism. Most of the diatom skeletons settled to the bottom where dissolution was rapid. The silica-salinity curves in this study thus demonstrate an apparent removal process for dissolved silica. This is because during summer the displacement rate of biogenic silica from a unit water column to the bottom as fecal pellets or by sinking is greater than the supply rate of dissolved silica by the action of diffusion and mixing of bottom water enriched with dissolved silica whereas in winter these rates are reasonably balanced.  相似文献   
230.
We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha− 1. We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha− 1 year− 1. This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha− 1 year− 1, respectively; the balance of our budget shows that at least 170 kg Si ha− 1 year− 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号